Fuglede's spectral set conjecture on cyclic groups

Romanos Diogenes Malikiosis

TU Berlin

Frame Theory and Exponential Bases 4-8 June 2018 ICERM, Providence

Joint work with M. Kolountzakis (U. of Crete) & work in progress

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)}e^{2\pi i\lambda\cdot x}:\lambda\in\Lambda\right\}$ in $L^2(\Omega)$, where $\Lambda\subseteq\mathbb{R}^n$ discrete?

Definition

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)}e^{2\pi i\lambda\cdot x}:\lambda\in\Lambda\right\}$ in $L^2(\Omega)$, where $\Lambda\subseteq\mathbb{R}^n$ discrete?

Definition

If Ω satisfies the above condition it is called *spectral*, and Λ is the *spectrum* of $\Omega.$

• The *n*-dimensional cube $C = [0, 1]^n$.

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)}e^{2\pi i\lambda\cdot x}:\lambda\in\Lambda\right\}$ in $L^2(\Omega)$, where $\Lambda\subseteq\mathbb{R}^n$ discrete?

Definition

- The *n*-dimensional cube $C = [0, 1]^n$.
- Parallelepipeds AC, where $A \in GL(n, \mathbb{R})$.

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)}e^{2\pi i\lambda\cdot x}:\lambda\in\Lambda\right\}$ in $L^2(\Omega)$, where $\Lambda\subseteq\mathbb{R}^n$ discrete?

Definition

- The *n*-dimensional cube $C = [0, 1]^n$.
- Parallelepipeds AC, where $A \in GL(n, \mathbb{R})$.
- Hexagons on \mathbb{R}^2 .

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)}e^{2\pi i\lambda\cdot x}:\lambda\in\Lambda\right\}$ in $L^2(\Omega)$, where $\Lambda\subseteq\mathbb{R}^n$ discrete?

Definition

- The *n*-dimensional cube $C = [0, 1]^n$.
- Parallelepipeds AC, where $A \in GL(n, \mathbb{R})$.
- Hexagons on \mathbb{R}^2 .
- Not *n*-dimensional balls! $(n \ge 2)$ (losevich, Katz, Pedersen, '99)

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^n$ with $\mu(\Omega) > 0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)}e^{2\pi i\lambda\cdot x}:\lambda\in\Lambda\right\}$ in $L^2(\Omega)$, where $\Lambda\subseteq\mathbb{R}^n$ discrete?

Definition

- The *n*-dimensional cube $C = [0, 1]^n$.
- Parallelepipeds AC, where $A \in GL(n, \mathbb{R})$.
- Hexagons on ℝ².
- Not *n*-dimensional balls! $(n \ge 2)$ (losevich, Katz, Pedersen, '99)

Definition

A set $\Omega \subseteq \mathbb{R}^n$ of positive measure is called *tile* of \mathbb{R}^n if there is $T \subseteq \mathbb{R}^n$ such that $\Omega \oplus T = \mathbb{R}^n$.

Conjecture (Fuglede, 1974)

A set $\Omega \subseteq \mathbb{R}^n$ of positive measure is spectral if and only if it tiles \mathbb{R}^n .

Definition

A set $\Omega \subseteq \mathbb{R}^n$ of positive measure is called *tile* of \mathbb{R}^n if there is $T \subseteq \mathbb{R}^n$ such that $\Omega \oplus T = \mathbb{R}^n$.

Conjecture (Fuglede, 1974)

A set $\Omega \subseteq \mathbb{R}^n$ of positive measure is spectral if and only if it tiles \mathbb{R}^n .

Let $e_{\lambda}(x) = e^{2\pi i \lambda \cdot x}$. Wlog, $\mu(\Omega) = 1$. Inner product and norm on $L^{2}(\Omega)$: $\langle f, g \rangle_{\Omega} = \int_{\Omega} f \overline{g}, \quad \|f\|_{\Omega}^{2} = \int_{\Omega} |f|^{2}.$ It holds $\langle e_{\lambda}, e_{\mu} \rangle_{\Omega} = \widehat{\mathbf{1}_{\Omega}}(\mu - \lambda).$

_emma

A is a spectrum of Ω if and only if

$$\widehat{\mathbf{l}_{\Omega}}(\lambda-\mu)=\mathbf{0},\,\,orall\lambda
eq\mu,\lambda,\mu\in\Lambda$$

and

$$orall f\in L^2(\Omega): \|f\|_{\Omega}^2=\sum_{\lambda\in\Lambda}|\langle f,e_\lambda
angle|^2.$$

Let $e_{\lambda}(x) = e^{2\pi i \lambda \cdot x}$. Wlog, $\mu(\Omega) = 1$. Inner product and norm on $L^{2}(\Omega)$: $\langle f, g \rangle_{\Omega} = \int_{\Omega} f \overline{g}, \quad ||f||_{\Omega}^{2} = \int_{\Omega} |f|^{2}.$ It holds $\langle e_{\lambda}, e_{\mu} \rangle_{\Omega} = \widehat{\mathbf{1}_{\Omega}}(\mu - \lambda).$

Lemma

A is a spectrum of Ω if and only if

$$\widehat{\mathbf{l}_{\Omega}}(\lambda-\mu)=\mathbf{0},\,\,orall\lambda
eq\mu,\lambda,\mu\in\Lambda$$

and

$$orall f\in L^2(\Omega): \|f\|_\Omega^2=\sum_{\lambda\in\Lambda} |\langle f,e_\lambda
angle|^2.$$

Let $\Omega \subseteq \mathbb{R}^n$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^n$ be a lattice with density 1. Then $\Omega \oplus \Lambda = \mathbb{R}^n$ if and only if Λ^* is a spectrum of Ω .

Theorem (Kolountzakis, '00)

Let $\Omega \subseteq \mathbb{R}^n$, $n \ge 2$, be a convex asymmetric body. Then Ω is not spectral.

Let $\Omega \subseteq \mathbb{R}^n$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^n$ be a lattice with density 1. Then $\Omega \oplus \Lambda = \mathbb{R}^n$ if and only if Λ^* is a spectrum of Ω .

Theorem (Kolountzakis, '00)

Let $\Omega \subseteq \mathbb{R}^n$, $n \ge 2$, be a convex asymmetric body. Then Ω is not spectral.

Theorem (Iosevich, Katz, Tao, '01)

Let $\Omega \subseteq \mathbb{R}^n$, $n \ge 2$, be a convex symmetric body. If $\partial \Omega$ is smooth, then Ω is not spectral. The same holds for n = 2 when $\partial \Omega$ is piecewise smooth possessing at least one point of nonzero curvature.

Let $\Omega \subseteq \mathbb{R}^n$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^n$ be a lattice with density 1. Then $\Omega \oplus \Lambda = \mathbb{R}^n$ if and only if Λ^* is a spectrum of Ω .

Theorem (Kolountzakis, '00)

Let $\Omega \subseteq \mathbb{R}^n$, $n \ge 2$, be a convex asymmetric body. Then Ω is not spectral.

Theorem (losevich, Katz, Tao, '01)

Let $\Omega \subseteq \mathbb{R}^n$, $n \ge 2$, be a convex symmetric body. If $\partial \Omega$ is smooth, then Ω is not spectral. The same holds for n = 2 when $\partial \Omega$ is piecewise smooth possessing at least one point of nonzero curvature.

Let $\Omega \subseteq \mathbb{R}^n$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^n$ be a lattice with density 1. Then $\Omega \oplus \Lambda = \mathbb{R}^n$ if and only if Λ^* is a spectrum of Ω .

Theorem (Kolountzakis, '00)

Let $\Omega \subseteq \mathbb{R}^n$, $n \ge 2$, be a convex asymmetric body. Then Ω is not spectral.

Theorem (losevich, Katz, Tao, '01)

Let $\Omega \subseteq \mathbb{R}^n$, $n \ge 2$, be a convex symmetric body. If $\partial \Omega$ is smooth, then Ω is not spectral. The same holds for n = 2 when $\partial \Omega$ is piecewise smooth possessing at least one point of nonzero curvature.

According to the theorems of Venkov ('54) and McMullen ('80), the above do not tile \mathbb{R}^n .

Theorem (Greenfeld, Lev, '17)

Let $K \subseteq \mathbb{R}^n$ be a convex symmetric polytope, which is spectral. Then its facets are also symmetric. Also, if n = 3, any spectral convex polytope tiles the space. According to the theorems of Venkov ('54) and McMullen ('80), the above do not tile \mathbb{R}^n .

Theorem (Greenfeld, Lev, '17)

Let $K \subseteq \mathbb{R}^n$ be a convex symmetric polytope, which is spectral. Then its facets are also symmetric. Also, if n = 3, any spectral convex polytope tiles the space.

Theorem (Tao, '04)

There are spectral subsets of \mathbb{R}^5 of positive measure that do not tile \mathbb{R}^5 .

Theorem (Tao, '04)

There are spectral subsets of \mathbb{R}^5 of positive measure that do not tile \mathbb{R}^5 .

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, '04-'06)

Fuglede's conjecture fails for $n \ge 3$ (both directions).

Theorem (Tao, '04)

There are spectral subsets of \mathbb{R}^5 of positive measure that do not tile \mathbb{R}^5 .

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, '04-'06)

Fuglede's conjecture fails for $n \ge 3$ (both directions).

The conjecture is still open for $n \leq 2$. Tao's counterexample is a union of unit cubes. It comes from a spectral subset of \mathbb{Z}_3^5 of size 6.

Theorem (Tao, '04)

There are spectral subsets of \mathbb{R}^5 of positive measure that do not tile \mathbb{R}^5 .

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, '04-'06)

Fuglede's conjecture fails for $n \ge 3$ (both directions).

The conjecture is still open for $n \le 2$. Tao's counterexample is a union of unit cubes. It comes from a spectral subset of \mathbb{Z}_3^5 of size 6.

Definition

Let G be an Abelian group. We write (S-T(G)) if every bounded spectral subset of G is also a tile, and (T-S(G)) if every bounded tile of G is spectral.

Theorem (Dutkay, Lai, '14)

The following hold:

$$(\mathsf{T}-\mathsf{S}(\mathbb{Z}_n)) \forall n \in \mathbb{N} \Leftrightarrow (\mathsf{T}-\mathsf{S}(\mathbb{Z})) \Leftrightarrow (\mathsf{T}-\mathsf{S}(\mathbb{R}))$$

and

$$(\mathsf{S}-\mathsf{T}(\mathbb{R})) \Rightarrow (\mathsf{S}-\mathsf{T}(\mathbb{Z})) \Rightarrow (\mathsf{S}-\mathsf{T}(\mathbb{Z}_n)) \forall n \in \mathbb{N}.$$

Definition

Let G be an Abelian group. We write (S-T(G)) if every bounded spectral subset of G is also a tile, and (T-S(G)) if every bounded tile of G is spectral.

Theorem (Dutkay, Lai, '14)

The following hold:

$$(\mathsf{T} extsf{S}(\mathbb{Z}_n)) orall n \in \mathbb{N} \Leftrightarrow (\mathsf{T} extsf{S}(\mathbb{Z})) \Leftrightarrow (\mathsf{T} extsf{S}(\mathbb{R}))$$

and

$$(S-T(\mathbb{R})) \Rightarrow (S-T(\mathbb{Z})) \Rightarrow (S-T(\mathbb{Z}_n)) \forall n \in \mathbb{N}.$$

The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum. Some results in the positive direction:

The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum. Some results in the positive direction:

• If $\Omega = A + [0, 1] \subseteq \mathbb{R}$ is spectral, with |A| = N and $A \subseteq [0, M - 1]$ with M < 5N/2, then Ω has a rational spectrum (Łaba, '02).

The last hold in both directions if every bounded spectral subset of $\mathbb R$ has a rational spectrum. Some results in the positive direction:

- If $\Omega = A + [0, 1] \subseteq \mathbb{R}$ is spectral, with |A| = N and $A \subseteq [0, M 1]$ with M < 5N/2, then Ω has a rational spectrum (Łaba, '02).
- If Fuglede's conjecture holds in ℝ, then every bounded spectral set has a rational spectrum (Dutkay, Lai, '14).

The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum. Some results in the positive direction:

- If $\Omega = A + [0,1] \subseteq \mathbb{R}$ is spectral, with |A| = N and $A \subseteq [0, M 1]$ with M < 5N/2, then Ω has a rational spectrum (Łaba, '02).
- If Fuglede's conjecture holds in ℝ, then every bounded spectral set has a rational spectrum (Dutkay, Lai, '14).
- If Ω = A + [0, 1] ⊆ ℝ is spectral, and A A contains certain patterns (flags), then Ω has rational spectrum (Bose, Madan, '17).

The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum. Some results in the positive direction:

- If $\Omega = A + [0,1] \subseteq \mathbb{R}$ is spectral, with |A| = N and $A \subseteq [0, M 1]$ with M < 5N/2, then Ω has a rational spectrum (Łaba, '02).
- If Fuglede's conjecture holds in ℝ, then every bounded spectral set has a rational spectrum (Dutkay, Lai, '14).
- If Ω = A + [0, 1] ⊆ ℝ is spectral, and A A contains certain patterns (flags), then Ω has rational spectrum (Bose, Madan, '17).

The properties (S-T(G)) and (T-S(G)) are hereditary, that is, they hold for every subgroup of G.

It suffices then to examine groups of the form \mathbb{Z}_N^d . For $d \ge 2$ we get the following results:

 There is a spectral subset of Z³₈ that does not tile (Kolountzakis, Matolcsi, '06).

- There is a spectral subset of Z₈³ that does not tile (Kolountzakis, Matolcsi, '06).
- There is a tile of \mathbb{Z}^3_{24} that is not spectral (Farkas, Matolcsi, Mora, '06).

- There is a spectral subset of Z₈³ that does not tile (Kolountzakis, Matolcsi, '06).
- There is a tile of \mathbb{Z}^3_{24} that is not spectral (Farkas, Matolcsi, Mora, '06).
- Fuglede's conjecture holds in Z²_p, p prime (losevich, Mayeli, Pakianathan, '17).

- There is a spectral subset of Z₈³ that does not tile (Kolountzakis, Matolcsi, '06).
- There is a tile of \mathbb{Z}^3_{24} that is not spectral (Farkas, Matolcsi, Mora, '06).
- Fuglede's conjecture holds in \mathbb{Z}_p^2 , *p* prime (losevich, Mayeli, Pakianathan, '17).

Łaba's work on tiles and spectral subsets $A \subseteq \mathbb{Z}$ with $|A| = p^n$ or $p^n q^m$, along with the results of Coven-Meyerowitz on tiling subsets of \mathbb{Z} , has the following consequences for for cyclic groups $G = \mathbb{Z}_N$:

If N is a prime power, then both (S-T(Z_N)) and (T-S(Z_N)) hold (also by Fan, Fan, Shi, '16, and Kolountzakis, M, '17).

Łaba's work on tiles and spectral subsets $A \subseteq \mathbb{Z}$ with $|A| = p^n$ or $p^n q^m$, along with the results of Coven-Meyerowitz on tiling subsets of \mathbb{Z} , has the following consequences for for cyclic groups $G = \mathbb{Z}_N$:

If N is a prime power, then both (S-T(Z_N)) and (T-S(Z_N)) hold (also by Fan, Fan, Shi, '16, and Kolountzakis, M, '17).

• If $N = p^n q^m$, then $(\mathbf{T}-\mathbf{S}(\mathbb{Z}_N))$ (also Kolountzakis, M, '17).

Łaba's work on tiles and spectral subsets $A \subseteq \mathbb{Z}$ with $|A| = p^n$ or $p^n q^m$, along with the results of Coven-Meyerowitz on tiling subsets of \mathbb{Z} , has the following consequences for for cyclic groups $G = \mathbb{Z}_N$:

- If N is a prime power, then both (S-T(Z_N)) and (T-S(Z_N)) hold (also by Fan, Fan, Shi, '16, and Kolountzakis, M, '17).
- If $N = p^n q^m$, then $(\mathbf{T}-\mathbf{S}(\mathbb{Z}_N))$ (also Kolountzakis, M, '17).

Łaba's work on tiles and spectral subsets $A \subseteq \mathbb{Z}$ with $|A| = p^n$ or $p^n q^m$, along with the results of Coven-Meyerowitz on tiling subsets of \mathbb{Z} , has the following consequences for for cyclic groups $G = \mathbb{Z}_N$:

- If N is a prime power, then both (S-T(Z_N)) and (T-S(Z_N)) hold (also by Fan, Fan, Shi, '16, and Kolountzakis, M, '17).
- If $N = p^n q^m$, then $(\mathbf{T}-\mathbf{S}(\mathbb{Z}_N))$ (also Kolountzakis, M, '17).

- If $N = p^n q$, then $(\mathbf{S} \mathbf{T}(\mathbb{Z}_N))$ (Kolountzakis, M, '17).
- If N is square-free, then (T-S(Z_N)) (Łaba and Meyerowitz, answering a question in Tao's blog, also, Shi '18).

- If $N = p^n q$, then $(\mathbf{S} \mathbf{T}(\mathbb{Z}_N))$ (Kolountzakis, M, '17).
- If N is square-free, then (T-S(ℤ_N)) (Łaba and Meyerowitz, answering a question in Tao's blog, also, Shi '18).
- If $N = p^n q^m$, with m or $n \le 6$, then $(\mathbf{S} \mathbf{T}(\mathbb{Z}_N))$ (M, work in progress).

- If $N = p^n q$, then **(S-T**(\mathbb{Z}_N)) (Kolountzakis, M, '17).
- If N is square-free, then (T-S(ℤ_N)) (Łaba and Meyerowitz, answering a question in Tao's blog, also, Shi '18).
- If $N = p^n q^m$, with m or $n \le 6$, then $(\mathbf{S} \mathbf{T}(\mathbb{Z}_N))$ (M, work in progress).
- If $N = p^n q^m$, with $m, n \ge 7$ and $p^{n-6} < q^3$ with p < q, then **(S-T**(\mathbb{Z}_N)) (M, work in progress).

- If $N = p^n q$, then **(S-T**(\mathbb{Z}_N)) (Kolountzakis, M, '17).
- If N is square-free, then (T-S(ℤ_N)) (Łaba and Meyerowitz, answering a question in Tao's blog, also, Shi '18).
- If $N = p^n q^m$, with m or $n \le 6$, then $(\mathbf{S} \mathbf{T}(\mathbb{Z}_N))$ (M, work in progress).
- If $N = p^n q^m$, with $m, n \ge 7$ and $p^{n-6} < q^3$ with p < q, then **(S-T**(\mathbb{Z}_N)**)** (M, work in progress).

The mask polynomial

Definition (Coven-Meyerowitz, '98)

Let $A \subseteq \mathbb{Z}_N$. The mask polynomial A is given by

$$\sum_{a\in A} X^a \in \mathbb{Z}[X]/(X^N-1).$$

lt holds

$$\widehat{\mathbf{1}}_{A}(d) = A(\zeta_{N}^{d}), \forall d \in \mathbb{Z}_{N}.$$

 Λ is a spectrum of A if and only if $|A| = |\Lambda|$ and

$$A(\zeta_{\operatorname{ord}(\ell-\ell')})=0, \ \forall \ell,\ell'\in\Lambda,\ell\neq\ell'.$$

The mask polynomial

Definition (Coven-Meyerowitz, '98)

Let $A \subseteq \mathbb{Z}_N$. The mask polynomial A is given by

$$\sum_{a\in A} X^a \in \mathbb{Z}[X]/(X^N-1).$$

It holds

$$\widehat{\mathbf{1}}_{A}(d) = A(\zeta_{N}^{d}), \forall d \in \mathbb{Z}_{N}.$$

A is a spectrum of A if and only if |A| = |A| and

$$A(\zeta_{\operatorname{ord}(\ell-\ell')})=0, \ \forall \ell,\ell'\in\Lambda,\ell
eq\ell'.$$

Moreover, $A \oplus T = \mathbb{Z}_N$ if and only if

$$A(X)T(X) \equiv 1 + X + X^2 + \dots + X^{N-1} \mod (X^N - 1).$$

The mask polynomial

Definition (Coven-Meyerowitz, '98)

Let $A \subseteq \mathbb{Z}_N$. The mask polynomial A is given by

$$\sum_{a\in A} X^a \in \mathbb{Z}[X]/(X^N-1).$$

It holds

$$\widehat{\mathbf{1}}_{A}(d) = A(\zeta_{N}^{d}), \forall d \in \mathbb{Z}_{N}.$$

 Λ is a spectrum of A if and only if $|A| = |\Lambda|$ and

$$A(\zeta_{\operatorname{ord}(\ell-\ell')})=0, \ \forall \ell,\ell'\in\Lambda,\ell
eq\ell'.$$

Moreover, $A \oplus T = \mathbb{Z}_N$ if and only if

$$A(X)T(X) \equiv 1 + X + X^2 + \dots + X^{N-1} \mod (X^N - 1).$$

The properties (T1) and (T2)

Definition

Let $A(X) \in \mathbb{Z}[X]/(X^N - 1)$, and let

$$S_A = \{d \mid N : d \text{ prime power}, A(\zeta_d) = 0\}.$$

We define the following properties:

(T1)
$$A(1) = \prod_{s \in S_A} \Phi_s(1)$$

(T2) Let $s_1, s_2, \dots, s_k \in S_A$ be powers of different primes. Then $\Phi_s(X) \mid A(X)$, where $s = s_1 \cdots s_k$.

Remark

When N is a prime power, (T2) holds vacuously. If $N = p^n q^m$, then (T2) is simply

$$A(\zeta_{p^k}) = A(\zeta_{q^\ell}) = 0 \Rightarrow A(\zeta_{p^k q^\ell}) = 0$$

The properties (T1) and (T2)

Definition

Let $A(X) \in \mathbb{Z}[X]/(X^N-1)$, and let

$$S_A = \{d \mid N : d \text{ prime power}, A(\zeta_d) = 0\}.$$

We define the following properties:

(T1)
$$A(1) = \prod_{s \in S_A} \Phi_s(1)$$

(T2) Let $s_1, s_2, \dots, s_k \in S_A$ be powers of different primes. Then $\Phi_s(X) \mid A(X)$, where $s = s_1 \cdots s_k$.

Remark

When N is a prime power, (T2) holds vacuously. If $N = p^n q^m$, then (T2) is simply

$$A(\zeta_{p^k}) = A(\zeta_{q^\ell}) = 0 \Rightarrow A(\zeta_{p^k q^\ell}) = 0$$

Let $A \subseteq \mathbb{Z}_N$, $N = p^4 q^4 r^3$, such that

$$A(\zeta_p) = A(\zeta_{p^3}) = A(\zeta_{q^2}) = A(\zeta_{r^3}) = 0,$$

and A(X) has no other root of order a power of p, q, or r. Then, (T1) is equivalent to $|A| = p^2 qr$, and (T2) is equivalent to

$$\begin{aligned} A(\zeta_{pq^2}) &= A(\zeta_{p^3q^2}) = A(\zeta_{pr^3}) = A(\zeta_{p^3r^3}) = A(\zeta_{q^2r^3}) = \\ &= A(\zeta_{pq^2r^3}) = A(\zeta_{p^3q^2r^3}) = 0. \end{aligned}$$

The following are consequences of the works of Coven-Meyerowitz ('98) and Łaba ('02); also Kolountzakis-Matolcsi ('07).

Theorem

If $A \subseteq \mathbb{Z}_N$ satisfies (T1) and (T2), then it tiles \mathbb{Z}_N . If A tiles \mathbb{Z}_N , then it satisfies (T1); if in addition $N = p^n q^m$, then A satisfies (T2) as well.

Theorem

If $A \subseteq \mathbb{Z}_N$ satisfies (T1) and (T2), then it is spectral. If $N = p^n$ and A is spectral, then it satisfies (T1).

The following are consequences of the works of Coven-Meyerowitz ('98) and Łaba ('02); also Kolountzakis-Matolcsi ('07).

Theorem

If $A \subseteq \mathbb{Z}_N$ satisfies (T1) and (T2), then it tiles \mathbb{Z}_N . If A tiles \mathbb{Z}_N , then it satisfies (T1); if in addition $N = p^n q^m$, then A satisfies (T2) as well.

Theorem

If $A \subseteq \mathbb{Z}_N$ satisfies (T1) and (T2), then it is spectral. If $N = p^n$ and A is spectral, then it satisfies (T1).

Let $A \oplus T = \mathbb{Z}_N$, with |A| = m. Then, also $A \oplus mT = \mathbb{Z}_N$, due to $(A - A) \cap (T - T) = \{0\}.$

The mask polynomial of mT is $T(X^m) \mod (X^N - 1)$, so if $p_1, \ldots, p_k \mid m$, we have

$$A(\zeta_{p_j})=0, 1\leq j\leq k,$$

since $p_j \nmid |T|$,

Let $A \oplus T = \mathbb{Z}_N$, with |A| = m. Then, also $A \oplus mT = \mathbb{Z}_N$, due to

$$(A-A)\cap (T-T)=\{0\}.$$

The mask polynomial of mT is $T(X^m) \mod (X^N - 1)$, so if $p_1, \ldots, p_k \mid m$, we have

$$A(\zeta_{p_j})=0, 1\leq j\leq k,$$

since $p_j \nmid |T|$, and

$$T(\zeta_{p_1\cdots p_k}^m)=T(1)\neq 0,$$

Let $A \oplus T = \mathbb{Z}_N$, with |A| = m. Then, also $A \oplus mT = \mathbb{Z}_N$, due to

$$(A-A)\cap (T-T)=\{0\}.$$

The mask polynomial of mT is $T(X^m) \mod (X^N - 1)$, so if $p_1, \ldots, p_k \mid m$, we have

$$A(\zeta_{p_j})=0, 1\leq j\leq k,$$

since $p_j \nmid |T|$, and

$$T(\zeta_{p_1\cdots p_k}^m)=T(1)\neq 0,$$

thus

$$A(\zeta_{p_1\cdots p_k})=0,$$

and A satisfies (T2).

Let $A \oplus T = \mathbb{Z}_N$, with |A| = m. Then, also $A \oplus mT = \mathbb{Z}_N$, due to $(A - A) \cap (T - T) = \{0\}.$

The mask polynomial of mT is $T(X^m) \mod (X^N - 1)$, so if $p_1, \ldots, p_k \mid m$, we have

$$A(\zeta_{p_j})=0, 1\leq j\leq k,$$

since $p_j \nmid |T|$, and

$$T(\zeta_{p_1\cdots p_k}^m)=T(1)\neq 0,$$

thus

$$A(\zeta_{p_1\cdots p_k})=0,$$

and A satisfies (T2).

Definition

A subset $A \subseteq G$ is called *primitive* if it is not contained in a proper coset of G.

_emma

Let $G = \mathbb{Z}_N$ with $N = p^n q^m$, and $A \subseteq \mathbb{Z}_N$ primitive. Then $(A - A) \cap \mathbb{Z}_N^* \neq \emptyset$.

Definition

A subset $A \subseteq G$ is called *primitive* if it is not contained in a proper coset of G.

Lemma

Let $G = \mathbb{Z}_N$ with $N = p^n q^m$, and $A \subseteq \mathbb{Z}_N$ primitive. Then $(A - A) \cap \mathbb{Z}_N^* \neq \emptyset$.

Proof.

Let $a \in A$. Since $a - A \nsubseteq p\mathbb{Z}_N$ or $q\mathbb{Z}_N$, there are $a', a'' \in A$ such that $a - a' \notin p\mathbb{Z}_N$, $a - a'' \notin q\mathbb{Z}_N$. If either $a - a' \notin q\mathbb{Z}_N$ or $a - a'' \notin p\mathbb{Z}_N$, then we're done, so wlog $q \mid a - a'$ and $p \mid a - a''$, which yields $a'' - a' \in \mathbb{Z}_N^*$.

Definition

A subset $A \subseteq G$ is called *primitive* if it is not contained in a proper coset of G.

Lemma

Let
$$G = \mathbb{Z}_N$$
 with $N = p^n q^m$, and $A \subseteq \mathbb{Z}_N$ primitive. Then $(A - A) \cap \mathbb{Z}_N^* \neq \emptyset$.

Proof.

Let $a \in A$. Since $a - A \nsubseteq p\mathbb{Z}_N$ or $q\mathbb{Z}_N$, there are $a', a'' \in A$ such that $a - a' \notin p\mathbb{Z}_N$, $a - a'' \notin q\mathbb{Z}_N$. If either $a - a' \notin q\mathbb{Z}_N$ or $a - a'' \notin p\mathbb{Z}_N$, then we're done, so wlog $q \mid a - a'$ and $p \mid a - a''$, which yields $a'' - a' \in \mathbb{Z}_N^*$.

Corollary

Let (A, B) be a spectral pair in \mathbb{Z}_N , such that both A and B are primitive. Then,

 $A(\zeta_N)=B(\zeta_N)=0.$

Remark

If A is not primitive, then $A \subseteq p\mathbb{Z}_N$ (say), which implies $(B-B) \cap \frac{N}{p}\mathbb{Z}_N = \{0\}$. Then, (\overline{A}, B) is a spectral pair in $\mathbb{Z}_{N/p}$, where $p \cdot \overline{A} = A$. Moreover, if \overline{A} satisfies (T1) and (T2) in $\mathbb{Z}_{N/p}$, then A satisfies the same properties in \mathbb{Z}_N .

Corollary

Let (A, B) be a spectral pair in \mathbb{Z}_N , such that both A and B are primitive. Then,

 $A(\zeta_N)=B(\zeta_N)=0.$

Remark

If A is not primitive, then $A \subseteq p\mathbb{Z}_N$ (say), which implies $(B-B) \cap \frac{N}{p}\mathbb{Z}_N = \{0\}$. Then, (\overline{A}, B) is a spectral pair in $\mathbb{Z}_{N/p}$, where $p \cdot \overline{A} = A$. Moreover, if \overline{A} satisfies (T1) and (T2) in $\mathbb{Z}_{N/p}$, then A satisfies the same properties in \mathbb{Z}_N .

Let rad(N) = pq and $A(X) \in \mathbb{Z}[X]$ with nonnegative coefficients, such that $A(\zeta_N^d) = 0$, for some $d \mid N$. Then,

$$A(X^d) \equiv P(X^d)\Phi_p(X^{N/p}) + Q(X^d)\Phi_q(X^{N/q}) \mod (X^N-1),$$

where $P(X), Q(X) \in \mathbb{Z}[X]$ can be taken with nonnegative coefficients.

• The polynomial $A(X^d)$ is the mask polynomial of the multiset $d \cdot A$.

Let rad(N) = pq and $A(X) \in \mathbb{Z}[X]$ with nonnegative coefficients, such that $A(\zeta_N^d) = 0$, for some $d \mid N$. Then,

$$A(X^d) \equiv P(X^d)\Phi_p(X^{N/p}) + Q(X^d)\Phi_q(X^{N/q}) \bmod (X^N-1),$$

where $P(X), Q(X) \in \mathbb{Z}[X]$ can be taken with nonnegative coefficients.

- The polynomial $A(X^d)$ is the mask polynomial of the multiset $d \cdot A$.
- $\Phi_p(X^{N/p})$ is the mask polynomial of the subgroup $\frac{N}{p}\mathbb{Z}_N$. Its cosets are called *p*-cycles.

Let rad(N) = pq and $A(X) \in \mathbb{Z}[X]$ with nonnegative coefficients, such that $A(\zeta_N^d) = 0$, for some $d \mid N$. Then,

$$A(X^d) \equiv P(X^d)\Phi_p(X^{N/p}) + Q(X^d)\Phi_q(X^{N/q}) \bmod (X^N-1),$$

where $P(X), Q(X) \in \mathbb{Z}[X]$ can be taken with nonnegative coefficients.

- The polynomial $A(X^d)$ is the mask polynomial of the multiset $d \cdot A$.
- $\Phi_p(X^{N/p})$ is the mask polynomial of the subgroup $\frac{N}{p}\mathbb{Z}_N$. Its cosets are called *p*-cycles.
- The above Lemma shows that if A(ζ_N) = 0, then A is the disjoint union of p- and q-cycles.

Let rad(N) = pq and $A(X) \in \mathbb{Z}[X]$ with nonnegative coefficients, such that $A(\zeta_N^d) = 0$, for some $d \mid N$. Then,

$$A(X^d) \equiv P(X^d)\Phi_p(X^{N/p}) + Q(X^d)\Phi_q(X^{N/q}) \bmod (X^N-1),$$

where $P(X), Q(X) \in \mathbb{Z}[X]$ can be taken with nonnegative coefficients.

- The polynomial $A(X^d)$ is the mask polynomial of the multiset $d \cdot A$.
- $\Phi_p(X^{N/p})$ is the mask polynomial of the subgroup $\frac{N}{p}\mathbb{Z}_N$. Its cosets are called *p*-cycles.
- The above Lemma shows that if A(ζ_N) = 0, then A is the disjoint union of p- and q-cycles.

Remark

If A is the disjoint union of p-cycles only, then

$$A \cap \left\{0, 1, \dots, \frac{N}{p} - 1
ight\}$$
 and $\frac{1}{p}B_{0 \mod p}$

is a spectral pair in $\mathbb{Z}_{N/p}$.

We reduce to the case where both A and B are nontrivial unions of p- and q-cycles. This implies

$$A(\zeta_p) = A(\zeta_q) = B(\zeta_p) = B(\zeta_q) = 0.$$

Remark

If A is the disjoint union of p-cycles only, then

$$A \cap \left\{0, 1, \dots, \frac{N}{p} - 1
ight\}$$
 and $rac{1}{p}B_{0 \mod p}$

is a spectral pair in $\mathbb{Z}_{N/p}$.

We reduce to the case where both A and B are nontrivial unions of p- and q-cycles. This implies

$$A(\zeta_p) = A(\zeta_q) = B(\zeta_p) = B(\zeta_q) = 0.$$

As a consequence,

$$|A_{j \mod p}| = |B_{j \mod p}| = \frac{1}{p}|A|, \ |A_{i \mod q}| = |B_{i \mod q}| = \frac{1}{q}|A|,$$

for all *i*, *j*.

Remark

If A is the disjoint union of p-cycles only, then

$$A \cap \left\{0, 1, \dots, \frac{N}{p} - 1\right\}$$
 and $\frac{1}{p}B_{0 \mod p}$

is a spectral pair in $\mathbb{Z}_{N/p}$.

We reduce to the case where both A and B are nontrivial unions of p- and q-cycles. This implies

$$A(\zeta_p) = A(\zeta_q) = B(\zeta_p) = B(\zeta_q) = 0.$$

As a consequence,

$$|A_{j \mod p}| = |B_{j \mod p}| = \frac{1}{p}|A|, \ |A_{i \mod q}| = |B_{i \mod q}| = \frac{1}{q}|A|,$$

for all *i*, *j*.

Let (A, B) be a primitive spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that neither A nor B is a union of p-(or q-)cycles exclusively. Then, both A(X) and B(X) vanish at

$$\zeta_N, \zeta_{p^n}, \zeta_{q^m}, \zeta_{p^n}, \zeta_{pq}, \zeta_{pq}, \zeta_{pq}, \zeta_{pq}, \zeta_{pq}$$

Let (A, B) be a primitive spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that neither A nor B is a union of p-(or q-)cycles exclusively. Then, both A(X) and B(X) vanish at

Let (A, B) be a primitive spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that neither A nor B is a union of p-(or q-)cycles exclusively. Then, both A(X) and B(X) vanish at

$$\begin{split} \zeta_N, \ \zeta_{p^n}, \ \zeta_{q^m}, \\ \zeta_p, \ \zeta_q, \ \zeta_{pq}, \\ \zeta_{p^nq}, \ \zeta_{pq^m}. \end{split}$$

Let (A, B) be a primitive spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that neither A nor B is a union of p-(or q-)cycles exclusively. Then, both A(X) and B(X) vanish at

$$\begin{split} \zeta_N, \ \zeta_{p^n}, \ \zeta_{q^m}, \\ \zeta_p, \ \zeta_q, \ \zeta_{pq}, \\ \zeta_{p^nq}, \ \zeta_{pq^m}. \end{split}$$

A special case

Proposition

If $N = p^m q^n$ and $A \subseteq \mathbb{Z}_N$ is spectral satisfying

$$A(\zeta_p) = A(\zeta_{p^2}) = \cdots = A(\zeta_{p^m}) = 0$$

then A tiles \mathbb{Z}_N .

Sketch of proof.

By hypothesis, $|A_{j \mod p^m}| = \frac{1}{p^m} |A|$.

A special case

Proposition

If $N = p^m q^n$ and $A \subseteq \mathbb{Z}_N$ is spectral satisfying

$$A(\zeta_p) = A(\zeta_{p^2}) = \cdots = A(\zeta_{p^m}) = 0$$

then A tiles \mathbb{Z}_N .

Sketch of proof.

By hypothesis, $|A_{j \mod p^{m}}| = \frac{1}{p^{m}}|A|$. Each $A_{j \mod p^{m}}(X)$ has precisely the same roots of the form $\zeta_{q^{k}}$ with A(X). So, A satisfies (T1).

A special case

Proposition

If $N = p^m q^n$ and $A \subseteq \mathbb{Z}_N$ is spectral satisfying

$$A(\zeta_p) = A(\zeta_{p^2}) = \cdots = A(\zeta_{p^m}) = 0$$

then A tiles \mathbb{Z}_N .

Sketch of proof.

By hypothesis, $|A_{j \mod p^{m}}| = \frac{1}{p^{m}}|A|$. Each $A_{j \mod p^{m}}(X)$ has precisely the same roots of the form $\zeta_{q^{k}}$ with A(X). So, A satisfies (T1). Next, if $A(\zeta_{q^{k}}) = 0$, then for each $1 \le i \le m$ we have

$$A(\zeta_{p^{j}q^{k}}) = \sum_{j=0}^{p^{m}-1} A_{j \mod p^{m}}(\zeta_{p^{j}q^{k}}) = \sum_{j=0}^{p^{m}-1} \zeta_{p^{j}q^{k}}^{j} \sigma(\zeta_{q^{k}}^{-j}A_{j \mod p^{m}}(\zeta_{q^{k}})) = 0$$

for some $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_{N})/\mathbb{Q})$, so it A satisfies (T2) as well.

A special case

Proposition

If $N = p^m q^n$ and $A \subseteq \mathbb{Z}_N$ is spectral satisfying

$$A(\zeta_p) = A(\zeta_{p^2}) = \cdots = A(\zeta_{p^m}) = 0$$

then A tiles \mathbb{Z}_N .

Sketch of proof.

By hypothesis, $|A_{j \mod p^m}| = \frac{1}{p^m}|A|$. Each $A_{j \mod p^m}(X)$ has precisely the same roots of the form ζ_{q^k} with A(X). So, A satisfies (T1). Next, if $A(\zeta_{q^k}) = 0$, then for each $1 \le i \le m$ we have

$$A(\zeta_{p^{i}q^{k}}) = \sum_{j=0}^{p^{m}-1} A_{j \mod p^{m}}(\zeta_{p^{i}q^{k}}) = \sum_{j=0}^{p^{m}-1} \zeta_{p^{i}q^{k}}^{j} \sigma(\zeta_{q^{k}}^{-j}A_{j \mod p^{m}}(\zeta_{q^{k}})) = 0$$

for some $\sigma \in Gal(\mathbb{Q}(\zeta_N)/\mathbb{Q})$, so it A satisfies (T2) as well.

Theorem

Let $A \subseteq \mathbb{Z}_N$ be spectral, with $N = p^n q^m$, $m \leq 2$. Then A tiles \mathbb{Z}_N .

Proof.

Wlog, A and a spectrum B are both primitive and nontrivial unions of p- and q-cycles, so using the above reductions we may assume $A(\zeta_q) = A(\zeta_{q^2}) = 0$, which by the previous Proposition yields that A tiles \mathbb{Z}_N .

Theorem

Let $A \subseteq \mathbb{Z}_N$ be spectral, with $N = p^n q^m$, $m \leq 2$. Then A tiles \mathbb{Z}_N .

Proof.

Wlog, A and a spectrum B are both primitive and nontrivial unions of p- and q-cycles, so using the above reductions we may assume $A(\zeta_q) = A(\zeta_{q^2}) = 0$, which by the previous Proposition yields that A tiles \mathbb{Z}_N .

The absorption-equidistribution property

Definition

We say that a subset $A \subseteq \mathbb{Z}_N$ satisfies the absorption-equidistribution property, if for every $d \mid N$ and p prime such that $pd \mid N$, either every subset $A_{j \mod d}$ is equidistributed mod pd, that is

$$|A_{j+kd \mod pd}| = \frac{1}{p} |A_{j \mod d}|, \forall k \in \{0, 1, \dots, p-1\},$$

or every $A_{j \mod d}$ is absorbed mod pd, i. e. there is $k \in \{0, 1, \dots, p-1\}$ such that

$$A_{j \bmod d} = A_{j+kd \bmod pd}.$$

The absorption-equidistribution property

Definition

We say that a subset $A \subseteq \mathbb{Z}_N$ satisfies the absorption-equidistribution property, if for every $d \mid N$ and p prime such that $pd \mid N$, either every subset $A_{j \mod d}$ is equidistributed mod pd, that is

$$|A_{j+kd \mod pd}| = \frac{1}{p} |A_{j \mod d}|, \forall k \in \{0, 1, \dots, p-1\},$$

or every $A_{j \mod d}$ is absorbed mod pd, i. e. there is $k \in \{0, 1, \dots, p-1\}$ such that

$$A_{j \bmod d} = A_{j+kd \bmod pd}.$$

Question

Is the absorption-equidistribution property equivalent to (T1) & (T2)?

The absorption-equidistribution property

Definition

We say that a subset $A \subseteq \mathbb{Z}_N$ satisfies the absorption-equidistribution property, if for every $d \mid N$ and p prime such that $pd \mid N$, either every subset $A_{j \mod d}$ is equidistributed mod pd, that is

$$|A_{j+kd \mod pd}| = \frac{1}{p} |A_{j \mod d}|, \forall k \in \{0, 1, \dots, p-1\},$$

or every $A_{j \mod d}$ is absorbed mod pd, i. e. there is $k \in \{0, 1, \dots, p-1\}$ such that

$$A_{j \bmod d} = A_{j+kd \bmod pd}.$$

Question

Is the absorption-equidistribution property equivalent to (T1) & (T2)?

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that $A_{j \mod p^k}$ is absorbed mod p^{k+1} for every j, some k < n. Then, there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N ;

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that $A_{j \mod p^k}$ is absorbed mod p^{k+1} for every j, some k < n. Then, there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N ; in addition, every $\overline{A_{j \mod p^k}}$ is equidistributed mod p^{k+1} ,

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that $A_{j \mod p^k}$ is absorbed $\operatorname{mod} p^{k+1}$ for every j, some k < n. Then, there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N ; in addition, every $\overline{A}_{j \mod p^k}$ is equidistributed $\operatorname{mod} p^{k+1}$, or equivalently,

 $A(\zeta_{p^{k+1}})=0.$

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that $A_{j \mod p^k}$ is absorbed $\operatorname{mod} p^{k+1}$ for every j, some k < n. Then, there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N ; in addition, every $\overline{A}_{j \mod p^k}$ is equidistributed $\operatorname{mod} p^{k+1}$, or equivalently,

 $\overline{A}(\zeta_{p^{k+1}})=0.$

Corollary

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$. Then there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N ,

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that $A_{j \mod p^k}$ is absorbed $\operatorname{mod} p^{k+1}$ for every j, some k < n. Then, there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N ; in addition, every $\overline{A}_{j \mod p^k}$ is equidistributed $\operatorname{mod} p^{k+1}$, or equivalently,

$$\overline{A}(\zeta_{p^{k+1}})=0.$$

Corollary

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$. Then there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N , such that for every k < n (resp. $\ell < m$), there is j such that $\overline{A}_{j \mod p^k}$ (resp. $\overline{A}_{j \mod q^\ell}$) is not absorbed $\mod p^{k+1}$ (resp. $\mod q^{\ell+1}$).

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that $A_{j \mod p^k}$ is absorbed $\operatorname{mod} p^{k+1}$ for every j, some k < n. Then, there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N ; in addition, every $\overline{A}_{j \mod p^k}$ is equidistributed $\operatorname{mod} p^{k+1}$, or equivalently,

$$\overline{A}(\zeta_{p^{k+1}})=0.$$

Corollary

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$. Then there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N , such that for every k < n (resp. $\ell < m$), there is j such that $\overline{A}_{j \mod p^k}$ (resp. $\overline{A}_{j \mod q^\ell}$) is not absorbed $\mod p^{k+1}$ (resp. $\mod q^{\ell+1}$). Such subsets will be called absorption-free.

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$, such that $A_{j \mod p^k}$ is absorbed $\operatorname{mod} p^{k+1}$ for every j, some k < n. Then, there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N ; in addition, every $\overline{A}_{j \mod p^k}$ is equidistributed $\operatorname{mod} p^{k+1}$, or equivalently,

$$\overline{A}(\zeta_{p^{k+1}})=0.$$

Corollary

Let (A, B) be a spectral pair in \mathbb{Z}_N , $N = p^n q^m$. Then there are $S, T \subseteq \mathbb{Z}_N$ such that $(\overline{A}, \overline{B}) = (A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_N , such that for every k < n (resp. $\ell < m$), there is j such that $\overline{A}_{j \mod p^k}$ (resp. $\overline{A}_{j \mod q^\ell}$) is not absorbed $\mod p^{k+1}$ (resp. $\mod q^{\ell+1}$). Such subsets will be called **absorption-free**.

Remark

With the above Corollary, we may further reduce to spectral (A, B), where both A, B are absorption-free.

This is used to prove:

Theorem (M)

Let $A \subseteq \mathbb{Z}_N$ be spectral, $N = p^n q^m$, satisfying (T1). Then, it also satisfies (T2), hence A tiles \mathbb{Z}_N .

Remark

With the above Corollary, we may further reduce to spectral (A, B), where both A, B are absorption-free.

This is used to prove:

Theorem (M)

Let $A \subseteq \mathbb{Z}_N$ be spectral, $N = p^n q^m$, satisfying (T1). Then, it also satisfies (T2), hence A tiles \mathbb{Z}_N .

Therefore it suffices to confirm (T1) for a spectral $A \subseteq \mathbb{Z}_N$. Actually, (T1) can be replaced by a weaker condition:

Definition

Let $A \subseteq \mathbb{Z}_N$. We say that A satisfies (wT1) if there is a prime $p \mid N$, such that $p^k \parallel |A|$, where A(X) has exactly k roots of the form $\zeta_{p^{\nu}}$.

Remark

With the above Corollary, we may further reduce to spectral (A, B), where both A, B are absorption-free.

This is used to prove:

Theorem (M)

Let $A \subseteq \mathbb{Z}_N$ be spectral, $N = p^n q^m$, satisfying (T1). Then, it also satisfies (T2), hence A tiles \mathbb{Z}_N .

Therefore it suffices to confirm (T1) for a spectral $A \subseteq \mathbb{Z}_N$. Actually, (T1) can be replaced by a weaker condition:

Definition

Let $A \subseteq \mathbb{Z}_N$. We say that A satisfies (wT1) if there is a prime $p \mid N$, such that $p^k \parallel |A|$, where A(X) has exactly k roots of the form $\zeta_{p^{\nu}}$.

Let $A \subseteq \mathbb{Z}_N$ be spectral, $N = p^n q^m$. If $p^n | |A|$, then A satisfies (wT1).

Theorem

Let $A \subseteq \mathbb{Z}_N$ be spectral, $N = p^n q^3$. Then A tiles \mathbb{Z}_N .

Let $A \subseteq \mathbb{Z}_N$ be spectral, $N = p^n q^m$. If $p^n | |A|$, then A satisfies (wT1).

Theorem

Let
$$A \subseteq \mathbb{Z}_N$$
 be spectral, $N = p^n q^3$. Then A tiles \mathbb{Z}_N .

Sketch of proof.

Wlog, A is primitive, nontrivial union of p- and q-cycles, absorption-free set. We know

$$A(\zeta_q) = A(\zeta_{q^3}) = A(\zeta_p) = A(\zeta_{pq}) = A(\zeta_{pq^3}) = 0.$$

Let $A \subseteq \mathbb{Z}_N$ be spectral, $N = p^n q^m$. If $p^n | |A|$, then A satisfies (wT1).

Theorem

Let
$$A \subseteq \mathbb{Z}_N$$
 be spectral, $N = p^n q^3$. Then A tiles \mathbb{Z}_N .

Sketch of proof.

Wlog, A is primitive, nontrivial union of p- and q-cycles, absorption-free set. We know

$$A(\zeta_q) = A(\zeta_{q^3}) = A(\zeta_p) = A(\zeta_{pq}) = A(\zeta_{pq^3}) = 0.$$

If $A(\zeta_{q^2}) = 0$ then A tiles \mathbb{Z}_N , so we assume $A(\zeta_{q^2}) \neq 0$. The fact that A is absorption-free forces $A(\zeta_{pq^2}) = 0$, which implies that each $A_{j \mod q}$ is either absorbed or equidistributed mod q^2 , both phenomena appearing.

Let $A \subseteq \mathbb{Z}_N$ be spectral, $N = p^n q^m$. If $p^n | |A|$, then A satisfies (wT1).

Theorem

Let
$$A \subseteq \mathbb{Z}_N$$
 be spectral, $N = p^n q^3$. Then A tiles \mathbb{Z}_N .

Sketch of proof.

Wlog, A is primitive, nontrivial union of p- and q-cycles, absorption-free set. We know

$$A(\zeta_q) = A(\zeta_{q^3}) = A(\zeta_p) = A(\zeta_{pq}) = A(\zeta_{pq^3}) = 0.$$

If $A(\zeta_{q^2}) = 0$ then A tiles \mathbb{Z}_N , so we assume $A(\zeta_{q^2}) \neq 0$. The fact that A is absorption-free forces $A(\zeta_{pq^2}) = 0$, which implies that each $A_{j \mod q}$ is either absorbed or equidistributed mod q^2 , both phenomena appearing. So, there is j such that $A_{j \mod q^3} = \frac{1}{q^3}|A|$, so A satisfies (wT1), and it tiles \mathbb{Z}_N .

Let $A \subseteq \mathbb{Z}_N$ be spectral, $N = p^n q^m$. If $p^n | |A|$, then A satisfies (wT1).

Theorem

Let
$$A \subseteq \mathbb{Z}_N$$
 be spectral, $N = p^n q^3$. Then A tiles \mathbb{Z}_N .

Sketch of proof.

Wlog, A is primitive, nontrivial union of p- and q-cycles, absorption-free set. We know

$$A(\zeta_q) = A(\zeta_{q^3}) = A(\zeta_p) = A(\zeta_{pq}) = A(\zeta_{pq^3}) = 0.$$

If $A(\zeta_{q^2}) = 0$ then A tiles \mathbb{Z}_N , so we assume $A(\zeta_{q^2}) \neq 0$. The fact that A is absorption-free forces $A(\zeta_{pq^2}) = 0$, which implies that each $A_{j \mod q}$ is either absorbed or equidistributed mod q^2 , both phenomena appearing. So, there is j such that $A_{j \mod q^3} = \frac{1}{q^3}|A|$, so A satisfies (wT1), and it tiles \mathbb{Z}_N .

Thank you