Fuglede's spectral set conjecture on cyclic groups

Romanos Diogenes Malikiosis

TU Berlin

Frame Theory and Exponential Bases
4-8 June 2018
ICERM, Providence

Joint work with M. Kolountzakis (U. of Crete)
\& work in progress

Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^{n}$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^{n}$ with $\mu(\Omega)>0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)} e^{2 \pi i \lambda \cdot x}: \lambda \in \Lambda\right\}$ in $L^{2}(\Omega)$, where $\Lambda \subseteq \mathbb{R}^{n}$ discrete?

Definition

If Ω satisfies the above condition it is called spectral, and Λ is the spectrum of Ω.

Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^{n}$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^{n}$ with $\mu(\Omega)>0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)} e^{2 \pi i \lambda \cdot x}: \lambda \in \Lambda\right\}$ in $L^{2}(\Omega)$, where $\Lambda \subseteq \mathbb{R}^{n}$ discrete?

Definition

If Ω satisfies the above condition it is called spectral, and Λ is the spectrum of Ω.

- The n-dimensional cube $C=[0,1]^{n}$.

Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^{n}$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^{n}$ with $\mu(\Omega)>0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)} e^{2 \pi i \lambda \cdot x}: \lambda \in \Lambda\right\}$ in $L^{2}(\Omega)$, where $\Lambda \subseteq \mathbb{R}^{n}$ discrete?

Definition

If Ω satisfies the above condition it is called spectral, and Λ is the spectrum of Ω.

- The n-dimensional cube $C=[0,1]^{n}$.
- Parallelepipeds $A C$, where $A \in G L(n, \mathbb{R})$.

Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^{n}$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^{n}$ with $\mu(\Omega)>0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)} e^{2 \pi i \lambda \cdot x}: \lambda \in \Lambda\right\}$ in $L^{2}(\Omega)$, where $\Lambda \subseteq \mathbb{R}^{n}$ discrete?

Definition

If Ω satisfies the above condition it is called spectral, and Λ is the spectrum of Ω.

- The n-dimensional cube $C=[0,1]^{n}$.
- Parallelepipeds $A C$, where $A \in G L(n, \mathbb{R})$.
- Hexagons on \mathbb{R}^{2}.

Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^{n}$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^{n}$ with $\mu(\Omega)>0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)} e^{2 \pi i \lambda \cdot x}: \lambda \in \Lambda\right\}$ in $L^{2}(\Omega)$, where $\Lambda \subseteq \mathbb{R}^{n}$ discrete?

Definition

If Ω satisfies the above condition it is called spectral, and Λ is the spectrum of Ω.

- The n-dimensional cube $C=[0,1]^{n}$.
- Parallelepipeds $A C$, where $A \in G L(n, \mathbb{R})$.
- Hexagons on \mathbb{R}^{2}.
- Not n-dimensional balls! $(n \geq 2)$ (losevich, Katz, Pedersen, '99)

Fourier Analysis on domains $\Omega \subseteq \mathbb{R}^{n}$

Question

On which measurable domains $\Omega \subseteq \mathbb{R}^{n}$ with $\mu(\Omega)>0$ can we do Fourier analysis, that is, there is an orthonormal basis of exponential functions $\left\{\frac{1}{\mu(\Omega)} e^{2 \pi i \lambda \cdot x}: \lambda \in \Lambda\right\}$ in $L^{2}(\Omega)$, where $\Lambda \subseteq \mathbb{R}^{n}$ discrete?

Definition

If Ω satisfies the above condition it is called spectral, and Λ is the spectrum of Ω.

- The n-dimensional cube $C=[0,1]^{n}$.
- Parallelepipeds $A C$, where $A \in G L(n, \mathbb{R})$.
- Hexagons on \mathbb{R}^{2}.
- Not n-dimensional balls! $(n \geq 2)$ (losevich, Katz, Pedersen, '99)

Fuglede's conjecture

Definition

A set $\Omega \subseteq \mathbb{R}^{n}$ of positive measure is called tile of \mathbb{R}^{n} if there is $T \subseteq \mathbb{R}^{n}$ such that $\Omega \oplus T=\mathbb{R}^{n}$.

Conjecture (Fuglede, 1974)

A set $\Omega \subseteq \mathbb{R}^{n}$ of positive measure is spectral if and only if it tiles \mathbb{R}^{n}.

Fuglede's conjecture

Definition

A set $\Omega \subseteq \mathbb{R}^{n}$ of positive measure is called tile of \mathbb{R}^{n} if there is $T \subseteq \mathbb{R}^{n}$ such that $\Omega \oplus T=\mathbb{R}^{n}$.

Conjecture (Fuglede, 1974)
A set $\Omega \subseteq \mathbb{R}^{n}$ of positive measure is spectral if and only if it tiles \mathbb{R}^{n}.

Basic properties

Let $e_{\lambda}(x)=e^{2 \pi i \lambda \cdot x}$. Wlog, $\mu(\Omega)=1$. Inner product and norm on $L^{2}(\Omega)$:

$$
\langle f, g\rangle_{\Omega}=\int_{\Omega} f \bar{g}, \quad\|f\|_{\Omega}^{2}=\int_{\Omega}|f|^{2}
$$

It holds $\left\langle e_{\lambda}, e_{\mu}\right\rangle_{\Omega}=\widehat{\mathbf{1}_{\Omega}}(\mu-\lambda)$.
Lemma
Λ is a spectrum of Ω if and only if

$$
\widehat{1_{\Omega}}(\lambda-\mu)=0, \quad \forall \lambda \neq \mu, \lambda, \mu \in \Lambda
$$

and

$$
\forall f \in L^{2}(\Omega):\|f\|_{\Omega}^{2}=\sum_{\lambda \in \Lambda}\left|\left\langle f, e_{\lambda}\right\rangle\right|^{2} .
$$

Basic properties

Let $e_{\lambda}(x)=e^{2 \pi i \lambda \cdot x}$. Wlog, $\mu(\Omega)=1$. Inner product and norm on $L^{2}(\Omega)$:

$$
\langle f, g\rangle_{\Omega}=\int_{\Omega} f \bar{g}, \quad\|f\|_{\Omega}^{2}=\int_{\Omega}|f|^{2}
$$

It holds $\left\langle e_{\lambda}, e_{\mu}\right\rangle_{\Omega}=\widehat{\mathbf{1}_{\Omega}}(\mu-\lambda)$.

Lemma

Λ is a spectrum of Ω if and only if

$$
\widehat{\mathbf{1}_{\Omega}}(\lambda-\mu)=0, \quad \forall \lambda \neq \mu, \lambda, \mu \in \Lambda
$$

and

$$
\forall f \in L^{2}(\Omega):\|f\|_{\Omega}^{2}=\sum_{\lambda \in \Lambda}\left|\left\langle f, e_{\lambda}\right\rangle\right|^{2}
$$

Special cases

> Theorem (Fuglede, '74)
> Let $\Omega \subseteq \mathbb{R}^{n}$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^{n}$ be a lattice with density 1 . Then $\Omega \oplus \Lambda=\mathbb{R}^{n}$ if and only if Λ^{\star} is a spectrum of Ω.

```
Theorem (Kolountzakis, '00)
Let \Omega\subseteq\mp@subsup{\mathbb{R}}{}{n},n\geq2\mathrm{ , be a convex asymmetric body. Then }\Omega\mathrm{ is not}
spectral.
```


Special cases

Theorem (Fuglede, '74)Let $\Omega \subseteq \mathbb{R}^{n}$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^{n}$ bea lattice with density 1 . Then $\Omega \oplus \Lambda=\mathbb{R}^{n}$ if and only if Λ^{\star} is aspectrum of Ω.
Theorem (Kolountzakis, '00)
Let $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, be a convex asymmetric body. Then Ω is not spectral.
Theorem (losevich, Katz, Tao, '01)
Let $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, be a convex symmetric body. If $\partial \Omega$ is smooth, then Ω is not spectral. The same holds for $n=2$ when $\partial \Omega$ is piecewise smooth possessing at least one point of nonzero curvature.

Special cases

> Theorem (Fuglede, '74)
> Let $\Omega \subseteq \mathbb{R}^{n}$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^{n}$ be a lattice with density 1 . Then $\Omega \oplus \Lambda=\mathbb{R}^{n}$ if and only if Λ^{\star} is a spectrum of Ω.

Theorem (Kolountzakis, '00)

Let $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, be a convex asymmetric body. Then Ω is not spectral.

Theorem (losevich, Katz, Tao, '01)

Let $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, be a convex symmetric body. If $\partial \Omega$ is smooth, then Ω is not spectral. The same holds for $n=2$ when $\partial \Omega$ is piecewise smooth possessing at least one point of nonzero curvature.

Special cases

> Theorem (Fuglede, '74)
> Let $\Omega \subseteq \mathbb{R}^{n}$ be an open bounded set of measure 1 and $\Lambda \subseteq \mathbb{R}^{n}$ be a lattice with density 1 . Then $\Omega \oplus \Lambda=\mathbb{R}^{n}$ if and only if Λ^{\star} is a spectrum of Ω.

Theorem (Kolountzakis, '00)

Let $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, be a convex asymmetric body. Then Ω is not spectral.

Theorem (losevich, Katz, Tao, '01)

Let $\Omega \subseteq \mathbb{R}^{n}, n \geq 2$, be a convex symmetric body. If $\partial \Omega$ is smooth, then Ω is not spectral. The same holds for $n=2$ when $\partial \Omega$ is piecewise smooth possessing at least one point of nonzero curvature.

Convex polytopes

According to the theorems of Venkov ('54) and McMullen ('80), the above do not tile \mathbb{R}^{n}.

Theorem (Greenfeld, Lev, '17)
Let $K \subseteq \mathbb{R}^{n}$ be a convex symmetric polytope, which is spectral.
Then its facets are also symmetric. Also, if $n=3$, any spectral
convex polytope tiles the space.

Convex polytopes

According to the theorems of Venkov ('54) and McMullen ('80), the above do not tile \mathbb{R}^{n}.

Theorem (Greenfeld, Lev, '17)

Let $K \subseteq \mathbb{R}^{n}$ be a convex symmetric polytope, which is spectral. Then its facets are also symmetric. Also, if $n=3$, any spectral convex polytope tiles the space.

Tao's counterexample

"A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile." The Fuglede Conjecture holds in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, losevich, Mayeli, Pakianathan, 2017.

Tao's counterexample

"A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile." The Fuglede Conjecture holds in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, losevich, Mayeli, Pakianathan, 2017.

Theorem (Tao, 04)
There are spectral subsets of \mathbb{R}^{5} of positive measure that do not tile \mathbb{R}^{5}

Tao's counterexample

"A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile." The Fuglede Conjecture holds in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, losevich, Mayeli, Pakianathan, 2017.

Theorem (Tao, '04)

There are spectral subsets of \mathbb{R}^{5} of positive measure that do not tile \mathbb{R}^{5}.

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, '04-'06)
 Fuglede's conjecture fails for $n \geq 3$ (both directions).

Tao's counterexample

"A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile." The Fuglede Conjecture holds in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, losevich, Mayeli, Pakianathan, 2017.

Theorem (Tao, '04)

There are spectral subsets of \mathbb{R}^{5} of positive measure that do not tile \mathbb{R}^{5}.

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, '04-'06)

Fuglede's conjecture fails for $n \geq 3$ (both directions).
The conjecture is still open for $n \leq 2$. Tao's counterexample is a union of unit cubes. It comes from a spectral subset of \mathbb{Z}_{3}^{5} of size 6 .

Tao's counterexample

"A cataclysmic event in the history of this problem took place in 2004 when Terry Tao disproved the Fuglede Conjecture by exhibiting a spectral set in \mathbb{R}^{12} which does not tile."
The Fuglede Conjecture holds in $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, losevich, Mayeli, Pakianathan, 2017.

Theorem (Tao, '04)

There are spectral subsets of \mathbb{R}^{5} of positive measure that do not tile \mathbb{R}^{5}.

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, '04-'06)

Fuglede's conjecture fails for $n \geq 3$ (both directions).
The conjecture is still open for $n \leq 2$. Tao's counterexample is a union of unit cubes. It comes from a spectral subset of \mathbb{Z}_{3}^{5} of size 6 .

Passage to finite groups

Definition

Let G be an Abelian group. We write (S-T($G)$) if every bounded spectral subset of G is also a tile, and (T-S(G)) if every bounded tile of G is spectral.

Theorem (Dutkay, Lai, '14)

The following hold:

$$
\left(\mathrm{T}-\mathrm{S}\left(\mathbb{Z}_{n}\right)\right) \forall n \in \mathbb{N} \Leftrightarrow(\mathrm{~T}-\mathrm{S}(\mathbb{Z})) \Leftrightarrow(\mathrm{T}-\mathrm{S}(\mathbb{R}))
$$

and

$$
(\mathbf{S}-\mathbf{T}(\mathbb{R})) \Rightarrow(\mathbf{S}-\mathbf{T}(\mathbb{Z})) \Rightarrow\left(\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{n}\right)\right) \forall n \in \mathbb{N} .
$$

Passage to finite groups

Definition

Let G be an Abelian group. We write (S-T($G)$) if every bounded spectral subset of G is also a tile, and (T-S(G)) if every bounded tile of G is spectral.

Theorem (Dutkay, Lai, '14)

The following hold:

$$
\left.\left.\left.\mathbf{(T - S}\left(\mathbb{Z}_{n}\right)\right) \forall n \in \mathbb{N} \Leftrightarrow \mathbf{(T - S}(\mathbb{Z})\right) \Leftrightarrow \mathbf{(T - S}(\mathbb{R})\right)
$$

and

$$
(\mathbf{S}-\mathbf{T}(\mathbb{R})) \Rightarrow \mathbf{(S - T}(\mathbb{Z})) \Rightarrow\left(\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{n}\right)\right) \forall n \in \mathbb{N} .
$$

Passage to finite groups

The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum. Some results in the positive direction:

Passage to finite groups

The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum. Some results in the positive direction:

- If $\Omega=A+[0,1] \subseteq \mathbb{R}$ is spectral, with $|A|=N$ and $A \subseteq[0, M-1]$ with $M<5 N / 2$, then Ω has a rational spectrum (Łaba, '02).

Passage to finite groups

The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum. Some results in the positive direction:

- If $\Omega=A+[0,1] \subseteq \mathbb{R}$ is spectral, with $|A|=N$ and $A \subseteq[0, M-1]$ with $M<5 N / 2$, then Ω has a rational spectrum (Łaba, '02).
- If Fuglede's conjecture holds in \mathbb{R}, then every bounded spectral set has a rational spectrum (Dutkay, Lai, '14).

Passage to finite groups

The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum. Some results in the positive direction:

- If $\Omega=A+[0,1] \subseteq \mathbb{R}$ is spectral, with $|A|=N$ and $A \subseteq[0, M-1]$ with $M<5 N / 2$, then Ω has a rational spectrum (Łaba, '02).
- If Fuglede's conjecture holds in \mathbb{R}, then every bounded spectral set has a rational spectrum (Dutkay, Lai, '14).
- If $\Omega=A+[0,1] \subseteq \mathbb{R}$ is spectral, and $A-A$ contains certain patterns (flags), then Ω has rational spectrum (Bose, Madan, '17).

Passage to finite groups

The last hold in both directions if every bounded spectral subset of \mathbb{R} has a rational spectrum. Some results in the positive direction:

- If $\Omega=A+[0,1] \subseteq \mathbb{R}$ is spectral, with $|A|=N$ and $A \subseteq[0, M-1]$ with $M<5 N / 2$, then Ω has a rational spectrum (Łaba, '02).
- If Fuglede's conjecture holds in \mathbb{R}, then every bounded spectral set has a rational spectrum (Dutkay, Lai, '14).
- If $\Omega=A+[0,1] \subseteq \mathbb{R}$ is spectral, and $A-A$ contains certain patterns (flags), then Ω has rational spectrum (Bose, Madan, '17).

Non-cyclic groups

The properties ($\mathbf{S}-\mathbf{T}(G)$) and ($\mathbf{T}-\mathbf{S}(G)$) are hereditary, that is, they hold for every subgroup of G.
It suffices then to examine groups of the form \mathbb{Z}_{N}^{d}. For $d \geq 2$ we get the following results:

Non-cyclic groups

The properties ($\mathbf{S}-\mathbf{T}(G)$) and ($\mathbf{T}-\mathbf{S}(G)$) are hereditary, that is, they hold for every subgroup of G.
It suffices then to examine groups of the form \mathbb{Z}_{N}^{d}. For $d \geq 2$ we get the following results:

- There is a spectral subset of \mathbb{Z}_{8}^{3} that does not tile (Kolountzakis, Matolcsi, '06).

Non-cyclic groups

The properties ($\mathbf{S}-\mathbf{T}(G)$) and ($\mathbf{T}-\mathbf{S}(G)$) are hereditary, that is, they hold for every subgroup of G.
It suffices then to examine groups of the form \mathbb{Z}_{N}^{d}. For $d \geq 2$ we get the following results:

- There is a spectral subset of \mathbb{Z}_{8}^{3} that does not tile (Kolountzakis, Matolcsi, '06).
- There is a tile of \mathbb{Z}_{24}^{3} that is not spectral (Farkas, Matolcsi, Mora, '06).

Non-cyclic groups

The properties ($\mathbf{S}-\mathbf{T}(G)$) and ($\mathbf{T}-\mathbf{S}(G)$) are hereditary, that is, they hold for every subgroup of G.
It suffices then to examine groups of the form \mathbb{Z}_{N}^{d}. For $d \geq 2$ we get the following results:

- There is a spectral subset of \mathbb{Z}_{8}^{3} that does not tile (Kolountzakis, Matolcsi, '06).
- There is a tile of \mathbb{Z}_{24}^{3} that is not spectral (Farkas, Matolcsi, Mora, '06).
- Fuglede's conjecture holds in \mathbb{Z}_{p}^{2}, p prime (losevich, Mayeli, Pakianathan, '17).

Non-cyclic groups

The properties ($\mathbf{S}-\mathbf{T}(G)$) and ($\mathbf{T}-\mathbf{S}(G)$) are hereditary, that is, they hold for every subgroup of G.
It suffices then to examine groups of the form \mathbb{Z}_{N}^{d}. For $d \geq 2$ we get the following results:

- There is a spectral subset of \mathbb{Z}_{8}^{3} that does not tile (Kolountzakis, Matolcsi, '06).
- There is a tile of \mathbb{Z}_{24}^{3} that is not spectral (Farkas, Matolcsi, Mora, '06).
- Fuglede's conjecture holds in \mathbb{Z}_{p}^{2}, p prime (losevich, Mayeli, Pakianathan, '17).

Cyclic groups

Łaba's work on tiles and spectral subsets $A \subseteq \mathbb{Z}$ with $|A|=p^{n}$ or $p^{n} q^{m}$, along with the results of Coven-Meyerowitz on tiling subsets of \mathbb{Z}, has the following consequences for for cyclic groups $G=\mathbb{Z}_{N}$:

- If N is a prime power, then both $\left(\mathrm{S}-\mathrm{T}\left(\mathbb{Z}_{N}\right)\right)$ and $\left(\mathrm{T}-\mathrm{S}\left(\mathbb{Z}_{N}\right)\right)$ hold (also by Fan, Fan, Shi, '16, and Kolountzakis, M, '17).

Cyclic groups

Łaba's work on tiles and spectral subsets $A \subseteq \mathbb{Z}$ with $|A|=p^{n}$ or $p^{n} q^{m}$, along with the results of Coven-Meyerowitz on tiling subsets of \mathbb{Z}, has the following consequences for for cyclic groups $G=\mathbb{Z}_{N}$:

- If N is a prime power, then both $\left(\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{N}\right)\right)$ and $\left(\mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{N}\right)\right)$ hold (also by Fan, Fan, Shi, '16, and Kolountzakis, M, '17).
- If $N=p^{n} q^{m}$, then ($\mathbf{T}-\mathrm{S}\left(\mathbb{Z}_{N}\right)$) (also Kolountzakis, M , '17).

Cyclic groups

Łaba's work on tiles and spectral subsets $A \subseteq \mathbb{Z}$ with $|A|=p^{n}$ or $p^{n} q^{m}$, along with the results of Coven-Meyerowitz on tiling subsets of \mathbb{Z}, has the following consequences for for cyclic groups $G=\mathbb{Z}_{N}$:

- If N is a prime power, then both $\left(\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{N}\right)\right)$ and $\left(\mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{N}\right)\right)$ hold (also by Fan, Fan, Shi, '16, and Kolountzakis, M, '17).
- If $N=p^{n} q^{m}$, then $\left(\mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{N}\right)\right.$) (also Kolountzakis, M , '17).

Cyclic groups

Łaba's work on tiles and spectral subsets $A \subseteq \mathbb{Z}$ with $|A|=p^{n}$ or $p^{n} q^{m}$, along with the results of Coven-Meyerowitz on tiling subsets of \mathbb{Z}, has the following consequences for for cyclic groups $G=\mathbb{Z}_{N}$:

- If N is a prime power, then both $\left(\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{N}\right)\right)$ and $\left(\mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{N}\right)\right)$ hold (also by Fan, Fan, Shi, '16, and Kolountzakis, M, '17).
- If $N=p^{n} q^{m}$, then $\left(\mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{N}\right)\right.$) (also Kolountzakis, M , '17).

Cyclic groups

Moreover,

- If $N=p^{n} q$, then $\left(\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{N}\right)\right)$ (Kolountzakis, $\left.\mathrm{M},{ }^{\prime} 17\right)$.
- If N is square-free, then $\left(T-S\left(\mathbb{Z}_{N}\right)\right)$ (Łaba and Meyerowitz, answering a question in Tao's blog, also, Shi '18).

Cyclic groups

Moreover,

- If $N=p^{n} q$, then $\left(\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{N}\right)\right)$ (Kolountzakis, M , '17).
- If N is square-free, then ($\mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{N}\right)$) (Łaba and Meyerowitz, answering a question in Tao's blog, also, Shi '18).
- If $N=p^{n} q^{m}$, with m or $n \leq 6$, then $\left(S-T\left(\mathbb{Z}_{N}\right)\right)$ (M, work in progress).

Cyclic groups

Moreover,

- If $N=p^{n} q$, then $\left(\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{N}\right)\right)$ (Kolountzakis, $\mathrm{M},{ }^{\prime} 17$).
- If N is square-free, then ($\mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{N}\right)$) (Łaba and Meyerowitz, answering a question in Tao's blog, also, Shi '18).
- If $N=p^{n} q^{m}$, with m or $n \leq 6$, then ($\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{N}\right)$) (M , work in progress).
- If $N=p^{n} q^{m}$, with $m, n \geq 7$ and $p^{n-6}<q^{3}$ with $p<q$, then $\left(\mathrm{S}-\mathrm{T}\left(\mathbb{Z}_{N}\right)\right)(\mathrm{M}$, work in progress).

Cyclic groups

Moreover,

- If $N=p^{n} q$, then $\left(\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{N}\right)\right)$ (Kolountzakis, M , '17).
- If N is square-free, then ($\mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{N}\right)$) (Łaba and Meyerowitz, answering a question in Tao's blog, also, Shi '18).
- If $N=p^{n} q^{m}$, with m or $n \leq 6$, then ($\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{N}\right)$) (M , work in progress).
- If $N=p^{n} q^{m}$, with $m, n \geq 7$ and $p^{n-6}<q^{3}$ with $p<q$, then $\left(\mathrm{S}-\mathrm{T}\left(\mathbb{Z}_{N}\right)\right)(\mathrm{M}$, work in progress).

The mask polynomial

Definition (Coven-Meyerowitz, '98)

Let $A \subseteq \mathbb{Z}_{N}$. The mask polynomial A is given by

$$
\sum X^{a} \in \mathbb{Z}[X] /\left(X^{N}-1\right)
$$

It holds

$$
\widehat{\mathbf{1}}_{A}(d)=A\left(\zeta_{N}^{d}\right), \forall d \in \mathbb{Z}_{N} .
$$

Λ is a spectrum of A if and only if $|A|=|\Lambda|$ and

$$
A\left(\zeta \operatorname{ord}\left(\ell-\ell^{\prime}\right)\right)=0, \forall \ell, \ell^{\prime} \in \Lambda, \ell \neq \ell^{\prime} .
$$

The mask polynomial

Definition (Coven-Meyerowitz, '98)

Let $A \subseteq \mathbb{Z}_{N}$. The mask polynomial A is given by

$$
\sum_{a \in A} X^{a} \in \mathbb{Z}[X] /\left(X^{N}-1\right)
$$

It holds

$$
\widehat{\mathbf{1}}_{A}(d)=A\left(\zeta_{N}^{d}\right), \forall d \in \mathbb{Z}_{N} .
$$

Λ is a spectrum of A if and only if $|A|=|\Lambda|$ and

$$
A\left(\zeta_{\operatorname{ord}\left(\ell-\ell^{\prime}\right)}\right)=0, \quad \forall \ell, \ell^{\prime} \in \Lambda, \ell \neq \ell^{\prime} .
$$

Moreover, $A \oplus T=\mathbb{Z}_{N}$ if and only if

$$
A(X) T(X) \equiv 1+X+X^{2}+\cdots+X^{N-1} \bmod \left(X^{N}-1\right)
$$

The mask polynomial

Definition (Coven-Meyerowitz, '98)

Let $A \subseteq \mathbb{Z}_{N}$. The mask polynomial A is given by

$$
\sum_{a \in A} X^{a} \in \mathbb{Z}[X] /\left(X^{N}-1\right)
$$

It holds

$$
\widehat{\mathbf{1}}_{A}(d)=A\left(\zeta_{N}^{d}\right), \forall d \in \mathbb{Z}_{N}
$$

Λ is a spectrum of A if and only if $|A|=|\Lambda|$ and

$$
A\left(\zeta_{\operatorname{ord}\left(\ell-\ell^{\prime}\right)}\right)=0, \forall \ell, \ell^{\prime} \in \Lambda, \ell \neq \ell^{\prime}
$$

Moreover, $A \oplus T=\mathbb{Z}_{N}$ if and only if

$$
A(X) T(X) \equiv 1+X+X^{2}+\cdots+X^{N-1} \bmod \left(X^{N}-1\right)
$$

The properties (T1) and (T2)

Definition

Let $A(X) \in \mathbb{Z}[X] /\left(X^{N}-1\right)$, and let

$$
S_{A}=\left\{d \mid N: d \text { prime power, } A\left(\zeta_{d}\right)=0\right\}
$$

We define the following properties:
(T1) $A(1)=\prod_{s \in S_{A}} \Phi_{s}(1)$
(T2) Let $s_{1}, s_{2}, \ldots, s_{k} \in S_{A}$ be powers of different primes. Then $\Phi_{s}(X) \mid A(X)$, where $s=s_{1} \cdots s_{k}$.

Remark

When N is a prime power, (T2) holds vacuously. If $N=p^{n} q^{m}$, then (T2) is simply

$$
A\left(\zeta_{p^{k}}\right)=A\left(\zeta_{q^{\ell}}\right)=0 \Rightarrow A\left(\zeta_{p^{k} q^{\ell}}\right)=0
$$

The properties (T1) and (T2)

Definition

Let $A(X) \in \mathbb{Z}[X] /\left(X^{N}-1\right)$, and let

$$
S_{A}=\left\{d \mid N: d \text { prime power, } A\left(\zeta_{d}\right)=0\right\}
$$

We define the following properties:
(T1) $A(1)=\prod_{s \in S_{A}} \Phi_{s}(1)$
(T2) Let $s_{1}, s_{2}, \ldots, s_{k} \in S_{A}$ be powers of different primes. Then $\Phi_{s}(X) \mid A(X)$, where $s=s_{1} \cdots s_{k}$.

Remark

When N is a prime power, (T2) holds vacuously. If $N=p^{n} q^{m}$, then (T2) is simply

$$
A\left(\zeta_{p^{k}}\right)=A\left(\zeta_{q^{\ell}}\right)=0 \Rightarrow A\left(\zeta_{p^{k} q^{\ell}}\right)=0
$$

Example

Let $A \subseteq \mathbb{Z}_{N}, N=p^{4} q^{4} r^{3}$, such that

$$
A\left(\zeta_{p}\right)=A\left(\zeta_{p^{3}}\right)=A\left(\zeta_{q^{2}}\right)=A\left(\zeta_{r^{3}}\right)=0
$$

and $A(X)$ has no other root of order a power of p, q, or r. Then, (T1) is equivalent to $|A|=p^{2} q r$, and (T2) is equivalent to

$$
\begin{gathered}
A\left(\zeta_{p q^{2}}\right)=A\left(\zeta_{p^{3} q^{2}}\right)=A\left(\zeta_{p r^{3}}\right)=A\left(\zeta_{p^{3} r^{3}}\right)=A\left(\zeta_{q^{2} r^{3}}\right)= \\
=A\left(\zeta_{p q^{2} r^{3}}\right)=A\left(\zeta_{p^{3} q^{2} r^{3}}\right)=0 .
\end{gathered}
$$

Tiling, spectrality, and (T1), (T2)

The following are consequences of the works of Coven-Meyerowitz ('98) and Łaba ('02); also Kolountzakis-Matolcsi ('07).

Theorem

If $A \subseteq \mathbb{Z}_{N}$ satisfies ($T 1$) and ($T 2$), then it tiles \mathbb{Z}_{N}. If A tiles \mathbb{Z}_{N}, then it satisfies (T1); if in addition $N=p^{n} q^{m}$, then A satisfies (T2) as well.

Theorem

If $A \subseteq \mathbb{Z}_{N}$ satisfies (T1) and (T2), then it is spectral. If $N=p^{n}$ and A is spectral, then it satisfies (T1).

Tiling, spectrality, and (T1), (T2)

The following are consequences of the works of Coven-Meyerowitz ('98) and Łaba ('02); also Kolountzakis-Matolcsi ('07).

Theorem

If $A \subseteq \mathbb{Z}_{N}$ satisfies (T1) and (T2), then it tiles \mathbb{Z}_{N}. If A tiles \mathbb{Z}_{N}, then it satisfies (T1); if in addition $N=p^{n} q^{m}$, then A satisfies (T2) as well.

Theorem

If $A \subseteq \mathbb{Z}_{N}$ satisfies (T1) and (T2), then it is spectral. If $N=p^{n}$ and A is spectral, then it satisfies (T1).

$\left(\mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{N}\right)\right), N$ square-free

Let $A \oplus T=\mathbb{Z}_{N}$, with $|A|=m$. Then, also $A \oplus m T=\mathbb{Z}_{N}$, due to

$$
(A-A) \cap(T-T)=\{0\} .
$$

The mask polynomial of $m T$ is $T\left(X^{m}\right) \bmod \left(X^{N}-1\right)$, so if $p_{1}, \ldots, p_{k} \mid m$, we have

$$
A\left(\zeta_{p_{j}}\right)=0,1 \leq j \leq k,
$$

since $p_{j} \nmid|T|$,

$\left(\mathrm{T}-\mathrm{S}\left(\mathbb{Z}_{N}\right)\right), N$ square-free

Let $A \oplus T=\mathbb{Z}_{N}$, with $|A|=m$. Then, also $A \oplus m T=\mathbb{Z}_{N}$, due to

$$
(A-A) \cap(T-T)=\{0\}
$$

The mask polynomial of $m T$ is $T\left(X^{m}\right) \bmod \left(X^{N}-1\right)$, so if $p_{1}, \ldots, p_{k} \mid m$, we have

$$
A\left(\zeta_{p_{j}}\right)=0,1 \leq j \leq k,
$$

since $p_{j} \nmid|T|$, and

$$
T\left(\zeta_{p_{1} \cdots p_{k}}^{m}\right)=T(1) \neq 0,
$$

$\left(\mathrm{T}-\mathrm{S}\left(\mathbb{Z}_{N}\right)\right), N$ square-free

Let $A \oplus T=\mathbb{Z}_{N}$, with $|A|=m$. Then, also $A \oplus m T=\mathbb{Z}_{N}$, due to

$$
(A-A) \cap(T-T)=\{0\}
$$

The mask polynomial of $m T$ is $T\left(X^{m}\right) \bmod \left(X^{N}-1\right)$, so if $p_{1}, \ldots, p_{k} \mid m$, we have

$$
A\left(\zeta_{p_{j}}\right)=0,1 \leq j \leq k
$$

since $p_{j} \nmid|T|$, and

$$
T\left(\zeta_{p_{1} \cdots p_{k}}^{m}\right)=T(1) \neq 0,
$$

thus

$$
A\left(\zeta_{p_{1} \cdots p_{k}}\right)=0,
$$

and A satisfies (T2).

$\left(\mathrm{T}-\mathrm{S}\left(\mathbb{Z}_{N}\right)\right), N$ square-free

Let $A \oplus T=\mathbb{Z}_{N}$, with $|A|=m$. Then, also $A \oplus m T=\mathbb{Z}_{N}$, due to

$$
(A-A) \cap(T-T)=\{0\}
$$

The mask polynomial of $m T$ is $T\left(X^{m}\right) \bmod \left(X^{N}-1\right)$, so if $p_{1}, \ldots, p_{k} \mid m$, we have

$$
A\left(\zeta_{p_{j}}\right)=0,1 \leq j \leq k
$$

since $p_{j} \nmid|T|$, and

$$
T\left(\zeta_{p_{1} \cdots p_{k}}^{m}\right)=T(1) \neq 0,
$$

thus

$$
A\left(\zeta_{p_{1} \cdots p_{k}}\right)=0,
$$

and A satisfies (T2).

Primitive subsets of \mathbb{Z}_{N}

Definition

A subset $A \subseteq G$ is called primitive if it is not contained in a proper coset of G.

Lemma

Let $G=\mathbb{Z}_{N}$ with $N=p^{n} q^{m}$, and $A \subseteq \mathbb{Z}_{N}$ primitive. Then $(A-A) \cap \mathbb{Z}_{N}^{\star} \neq \varnothing$.

Primitive subsets of \mathbb{Z}_{N}

Definition

A subset $A \subseteq G$ is called primitive if it is not contained in a proper coset of G.

Lemma

Let $G=\mathbb{Z}_{N}$ with $N=p^{n} q^{m}$, and $A \subseteq \mathbb{Z}_{N}$ primitive. Then $(A-A) \cap \mathbb{Z}_{N}^{\star} \neq \varnothing$.

Proof.

Let $a \in A$. Since $a-A \nsubseteq p \mathbb{Z}_{N}$ or $q \mathbb{Z}_{N}$, there are $a^{\prime}, a^{\prime \prime} \in A$ such that $a-a^{\prime} \notin p \mathbb{Z}_{N}, a-a^{\prime \prime} \notin q \mathbb{Z}_{N}$. If either $a-a^{\prime} \notin q \mathbb{Z}_{N}$ or $a-a^{\prime \prime} \notin p \mathbb{Z}_{N}$, then we're done, so wlog $q \mid a-a^{\prime}$ and $p \mid a-a^{\prime \prime}$, which yields $a^{\prime \prime}-a^{\prime} \in \mathbb{Z}_{N}^{\star}$.

Primitive subsets of \mathbb{Z}_{N}

Definition

A subset $A \subseteq G$ is called primitive if it is not contained in a proper coset of G.

Lemma

Let $G=\mathbb{Z}_{N}$ with $N=p^{n} q^{m}$, and $A \subseteq \mathbb{Z}_{N}$ primitive. Then $(A-A) \cap \mathbb{Z}_{N}^{\star} \neq \varnothing$.

Proof.

Let $a \in A$. Since $a-A \nsubseteq p \mathbb{Z}_{N}$ or $q \mathbb{Z}_{N}$, there are $a^{\prime}, a^{\prime \prime} \in A$ such that $a-a^{\prime} \notin p \mathbb{Z}_{N}, a-a^{\prime \prime} \notin q \mathbb{Z}_{N}$. If either $a-a^{\prime} \notin q \mathbb{Z}_{N}$ or $a-a^{\prime \prime} \notin p \mathbb{Z}_{N}$, then we're done, so wlog $q \mid a-a^{\prime}$ and $p \mid a-a^{\prime \prime}$, which yields $a^{\prime \prime}-a^{\prime} \in \mathbb{Z}_{N}^{\star}$.

Primitive spectral pairs, $N=p^{n} q^{m}$

Corollary

Let (A, B) be a spectral pair in \mathbb{Z}_{N}, such that both A and B are primitive. Then,

$$
A\left(\zeta_{N}\right)=B\left(\zeta_{N}\right)=0
$$

Remark

If A is not primitive, then $A \subseteq p \mathbb{Z}_{N}$ (say), which implies $(B-B) \cap \frac{N}{p} \mathbb{Z}_{N}=\{0\}$. Then, (\bar{A}, B) is a spectral pair in $\mathbb{Z}_{N / p}$, where $p \cdot \bar{A}=A$. Moreover, if \bar{A} satisfies (T1) and (T2) in $\mathbb{Z}_{N / p}$, then A satisfies the same properties in \mathbb{Z}_{N}.

Primitive spectral pairs, $N=p^{n} q^{m}$

Corollary

Let (A, B) be a spectral pair in \mathbb{Z}_{N}, such that both A and B are primitive. Then,

$$
A\left(\zeta_{N}\right)=B\left(\zeta_{N}\right)=0
$$

Remark

If A is not primitive, then $A \subseteq p \mathbb{Z}_{N}$ (say), which implies $(B-B) \cap \frac{N}{p} \mathbb{Z}_{N}=\{0\}$. Then, (\bar{A}, B) is a spectral pair in $\mathbb{Z}_{N / p}$, where $p \cdot \bar{A}=A$. Moreover, if \bar{A} satisfies (T1) and (T2) in $\mathbb{Z}_{N / p}$, then A satisfies the same properties in \mathbb{Z}_{N}.

Vanishing sums of roots of unity

Lemma

Let $\operatorname{rad}(N)=p q$ and $A(X) \in \mathbb{Z}[X]$ with nonnegative coefficients, such that $A\left(\zeta_{N}^{d}\right)=0$, for some $d \mid N$. Then,

$$
A\left(X^{d}\right) \equiv P\left(X^{d}\right) \Phi_{p}\left(X^{N / p}\right)+Q\left(X^{d}\right) \Phi_{q}\left(X^{N / q}\right) \bmod \left(X^{N}-1\right)
$$

where $P(X), Q(X) \in \mathbb{Z}[X]$ can be taken with nonnegative coefficients.

- The polynomial $A\left(X^{d}\right)$ is the mask polynomial of the multiset d. A.

Vanishing sums of roots of unity

Lemma

Let $\operatorname{rad}(N)=p q$ and $A(X) \in \mathbb{Z}[X]$ with nonnegative coefficients, such that $A\left(\zeta_{N}^{d}\right)=0$, for some $d \mid N$. Then,

$$
A\left(X^{d}\right) \equiv P\left(X^{d}\right) \Phi_{p}\left(X^{N / p}\right)+Q\left(X^{d}\right) \Phi_{q}\left(X^{N / q}\right) \bmod \left(X^{N}-1\right)
$$

where $P(X), Q(X) \in \mathbb{Z}[X]$ can be taken with nonnegative coefficients.

- The polynomial $A\left(X^{d}\right)$ is the mask polynomial of the multiset $d \cdot A$.
- $\Phi_{p}\left(X^{N / p}\right)$ is the mask polynomial of the subgroup $\frac{N}{p} \mathbb{Z}_{N}$. Its cosets are called p-cycles.

Vanishing sums of roots of unity

Lemma

Let $\operatorname{rad}(N)=p q$ and $A(X) \in \mathbb{Z}[X]$ with nonnegative coefficients, such that $A\left(\zeta_{N}^{d}\right)=0$, for some $d \mid N$. Then,

$$
A\left(X^{d}\right) \equiv P\left(X^{d}\right) \Phi_{p}\left(X^{N / p}\right)+Q\left(X^{d}\right) \Phi_{q}\left(X^{N / q}\right) \bmod \left(X^{N}-1\right)
$$

where $P(X), Q(X) \in \mathbb{Z}[X]$ can be taken with nonnegative coefficients.

- The polynomial $A\left(X^{d}\right)$ is the mask polynomial of the multiset d. A.
- $\Phi_{p}\left(X^{N / p}\right)$ is the mask polynomial of the subgroup $\frac{N}{p} \mathbb{Z}_{N}$. Its cosets are called p-cycles.
- The above Lemma shows that if $A\left(\zeta_{N}\right)=0$, then A is the disjoint union of p - and q-cycles.

Vanishing sums of roots of unity

Lemma

Let $\operatorname{rad}(N)=p q$ and $A(X) \in \mathbb{Z}[X]$ with nonnegative coefficients, such that $A\left(\zeta_{N}^{d}\right)=0$, for some $d \mid N$. Then,

$$
A\left(X^{d}\right) \equiv P\left(X^{d}\right) \Phi_{p}\left(X^{N / p}\right)+Q\left(X^{d}\right) \Phi_{q}\left(X^{N / q}\right) \bmod \left(X^{N}-1\right)
$$

where $P(X), Q(X) \in \mathbb{Z}[X]$ can be taken with nonnegative coefficients.

- The polynomial $A\left(X^{d}\right)$ is the mask polynomial of the multiset $d \cdot A$.
- $\Phi_{p}\left(X^{N / p}\right)$ is the mask polynomial of the subgroup $\frac{N}{p} \mathbb{Z}_{N}$. Its cosets are called p-cycles.
- The above Lemma shows that if $A\left(\zeta_{N}\right)=0$, then A is the disjoint union of p - and q-cycles.

Remark

If A is the disjoint union of p-cycles only, then

$$
A \cap\left\{0,1, \ldots, \frac{N}{p}-1\right\} \text { and } \frac{1}{p} B_{0 \bmod p}
$$

is a spectral pair in $\mathbb{Z}_{N / p}$.
We reduce to the case where both A and B are nontrivial unions of p - and q-cycles. This implies

$$
A\left(\zeta_{p}\right)=A\left(\zeta_{q}\right)=B\left(\zeta_{p}\right)=B\left(\zeta_{q}\right)=0 .
$$

Remark

If A is the disjoint union of p-cycles only, then

$$
A \cap\left\{0,1, \ldots, \frac{N}{p}-1\right\} \text { and } \frac{1}{p} B_{0 \bmod p}
$$

is a spectral pair in $\mathbb{Z}_{N / p}$.
We reduce to the case where both A and B are nontrivial unions of p - and q-cycles. This implies

$$
A\left(\zeta_{p}\right)=A\left(\zeta_{q}\right)=B\left(\zeta_{p}\right)=B\left(\zeta_{q}\right)=0
$$

As a consequence,

$$
\left|A_{j \bmod p}\right|=\left|B_{j \bmod p}\right|=\frac{1}{p}|A|,\left|A_{i \bmod q}\right|=\left|B_{i \bmod q}\right|=\frac{1}{q}|A|,
$$

for all i, j.

Remark

If A is the disjoint union of p-cycles only, then

$$
A \cap\left\{0,1, \ldots, \frac{N}{p}-1\right\} \text { and } \frac{1}{p} B_{0 \bmod p}
$$

is a spectral pair in $\mathbb{Z}_{N / p}$.
We reduce to the case where both A and B are nontrivial unions of p - and q-cycles. This implies

$$
A\left(\zeta_{p}\right)=A\left(\zeta_{q}\right)=B\left(\zeta_{p}\right)=B\left(\zeta_{q}\right)=0
$$

As a consequence,

$$
\left|A_{j \bmod p}\right|=\left|B_{j \bmod p}\right|=\frac{1}{p}|A|,\left|A_{i \bmod q}\right|=\left|B_{i \bmod q}\right|=\frac{1}{q}|A|,
$$

for all i, j.

Proposition

Let (A, B) be a primitive spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that neither A nor B is a union of p-(or q-)cycles exclusively. Then, both $A(X)$ and $B(X)$ vanish at

$$
\zeta_{N}, \zeta_{p^{n}}, \zeta_{q^{m}}
$$

Proposition

Let (A, B) be a primitive spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that neither A nor B is a union of p-(or q-)cycles exclusively. Then, both $A(X)$ and $B(X)$ vanish at

$$
\begin{array}{r}
\zeta_{N}, \zeta_{p^{n}}, \zeta_{q^{m}} \\
\zeta_{p}, \zeta_{q}, \zeta_{p q}
\end{array}
$$

Proposition

Let (A, B) be a primitive spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that neither A nor B is a union of p-(or q-)cycles exclusively. Then, both $A(X)$ and $B(X)$ vanish at

$$
\begin{array}{r}
\zeta_{N}, \zeta_{p^{n}}, \zeta_{q^{m}} \\
\zeta_{p}, \zeta_{q}, \zeta_{p q} \\
\zeta_{p^{n} q}, \zeta_{p q^{m}}
\end{array}
$$

Proposition

Let (A, B) be a primitive spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that neither A nor B is a union of p-(or q-)cycles exclusively. Then, both $A(X)$ and $B(X)$ vanish at

$$
\begin{array}{r}
\zeta_{N}, \zeta_{p^{n}}, \zeta_{q^{m}} \\
\zeta_{p}, \zeta_{q}, \zeta_{p q} \\
\zeta_{p^{n} q}, \zeta_{p q^{m}}
\end{array}
$$

A special case

Proposition

If $N=p^{m} q^{n}$ and $A \subseteq \mathbb{Z}_{N}$ is spectral satisfying

$$
A\left(\zeta_{p}\right)=A\left(\zeta_{p^{2}}\right)=\cdots=A\left(\zeta_{p^{m}}\right)=0
$$

then A tiles \mathbb{Z}_{N}.

Sketch of proof.

By hypothesis, $\left|A_{j \bmod p^{m}}\right|=\frac{1}{p^{m}}|A|$.

A special case

Proposition

If $N=p^{m} q^{n}$ and $A \subseteq \mathbb{Z}_{N}$ is spectral satisfying

$$
A\left(\zeta_{p}\right)=A\left(\zeta_{p^{2}}\right)=\cdots=A\left(\zeta_{p^{m}}\right)=0
$$

then A tiles \mathbb{Z}_{N}.

Sketch of proof.

By hypothesis, $\left|A_{j \bmod p^{m}}\right|=\frac{1}{p^{m}}|A|$. Each $A_{j \bmod p^{m}}(X)$ has precisely the same roots of the form $\zeta_{q^{k}}$ with $A(X)$. So, A satisfies (T1).

A special case

Proposition

If $N=p^{m} q^{n}$ and $A \subseteq \mathbb{Z}_{N}$ is spectral satisfying

$$
A\left(\zeta_{p}\right)=A\left(\zeta_{p^{2}}\right)=\cdots=A\left(\zeta_{p^{m}}\right)=0
$$

then A tiles \mathbb{Z}_{N}.

Sketch of proof.

By hypothesis, $\left|A_{j \bmod p^{m}}\right|=\frac{1}{p^{m}}|A|$. Each $A_{j \bmod p^{m}}(X)$ has precisely the same roots of the form $\zeta_{q^{k}}$ with $A(X)$. So, A satisfies (T1). Next, if $A\left(\zeta_{q^{k}}\right)=0$, then for each $1 \leq i \leq m$ we have
$A\left(\zeta_{p^{i} q^{k}}\right)=\sum_{j=0}^{p^{m}-1} A_{j \bmod p^{m}}\left(\zeta_{p^{i} q^{k}}\right)=\sum_{j=0}^{p^{m}-1} \zeta_{p^{i} q^{k}}^{j} \sigma\left(\zeta_{q^{k}}^{-j} A_{j \bmod p^{m}}\left(\zeta_{q^{k}}\right)\right)=0$
for some $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)$, so it A satisfies (T2) as well.

A special case

Proposition

If $N=p^{m} q^{n}$ and $A \subseteq \mathbb{Z}_{N}$ is spectral satisfying

$$
A\left(\zeta_{p}\right)=A\left(\zeta_{p^{2}}\right)=\cdots=A\left(\zeta_{p^{m}}\right)=0
$$

then A tiles \mathbb{Z}_{N}.

Sketch of proof.

By hypothesis, $\left|A_{j \bmod p^{m}}\right|=\frac{1}{p^{m}}|A|$. Each $A_{j \bmod p^{m}}(X)$ has precisely the same roots of the form $\zeta_{q^{k}}$ with $A(X)$. So, A satisfies (T1). Next, if $A\left(\zeta_{q^{k}}\right)=0$, then for each $1 \leq i \leq m$ we have

$$
A\left(\zeta_{p^{i} q^{k}}\right)=\sum_{j=0}^{p^{m}-1} A_{j \bmod p^{m}}\left(\zeta_{p^{i} q^{k}}\right)=\sum_{j=0}^{p^{m}-1} \zeta_{p^{i} q^{k}}^{j} \sigma\left(\zeta_{q^{k}}^{-j} A_{j \bmod p^{m}}\left(\zeta_{q^{k}}\right)\right)=0
$$

for some $\sigma \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)$, so it A satisfies (T2) as well.

Theorem
 Let $A \subseteq \mathbb{Z}_{N}$ be spectral, with $N=p^{n} q^{m}, m \leq 2$. Then A tiles \mathbb{Z}_{N}.

Proof.

Wlog, A and a spectrum B are both primitive and nontrivial unions of p - and q-cycles, so using the above reductions we may assume $A\left(\zeta_{q}\right)=A\left(\zeta_{q^{2}}\right)=0$, which by the previous Proposition yields that A tiles \mathbb{Z}_{N}.

Theorem

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, with $N=p^{n} q^{m}, m \leq 2$. Then A tiles \mathbb{Z}_{N}.

Proof.

Wlog, A and a spectrum B are both primitive and nontrivial unions of p - and q-cycles, so using the above reductions we may assume $A\left(\zeta_{q}\right)=A\left(\zeta_{q^{2}}\right)=0$, which by the previous Proposition yields that A tiles \mathbb{Z}_{N}.

The absorption-equidistribution property

Definition

We say that a subset $A \subseteq \mathbb{Z}_{N}$ satisfies the absorption-equidistribution property, if for every $d \mid N$ and p prime such that $p d \mid N$, either every subset $A_{j \bmod d}$ is equidistributed $\bmod p d$, that is

$$
\left|A_{j+k d \bmod p d}\right|=\frac{1}{p}\left|A_{j \bmod d}\right|, \forall k \in\{0,1, \ldots, p-1\}
$$

or every $A_{j \bmod d}$ is absorbed modpd, i. e. there is $k \in\{0,1, \ldots, p-1\}$ such that
$A_{j \bmod d}=A_{j+k d \bmod p d}$.

The absorption-equidistribution property

Definition

We say that a subset $A \subseteq \mathbb{Z}_{N}$ satisfies the absorption-equidistribution property, if for every $d \mid N$ and p prime such that $p d \mid N$, either every subset $A_{j \bmod d}$ is equidistributed $\bmod p d$, that is

$$
\left|A_{j+k d \bmod p d}\right|=\frac{1}{p}\left|A_{j \bmod d}\right|, \forall k \in\{0,1, \ldots, p-1\}
$$

or every $A_{j \bmod d}$ is absorbed $\bmod p d$, i. e. there is $k \in\{0,1, \ldots, p-1\}$ such that

$$
A_{j \bmod d}=A_{j+k d \bmod p d}
$$

Question
 Is the absorption-equidistribution property equivalent to (T1) \& (T2)?

The absorption-equidistribution property

Definition

We say that a subset $A \subseteq \mathbb{Z}_{N}$ satisfies the absorption-equidistribution property, if for every $d \mid N$ and p prime such that $p d \mid N$, either every subset $A_{j \bmod d}$ is equidistributed $\bmod p d$, that is

$$
\left|A_{j+k d \bmod p d}\right|=\frac{1}{p}\left|A_{j \bmod d}\right|, \forall k \in\{0,1, \ldots, p-1\}
$$

or every $A_{j \bmod d}$ is absorbed $\bmod p d$, i. e. there is $k \in\{0,1, \ldots, p-1\}$ such that

$$
A_{j \bmod d}=A_{j+k d \bmod p d}
$$

Question

Is the absorption-equidistribution property equivalent to (T1) \& (T2)?

Proposition

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that $A_{j \bmod p^{k}}$ is absorbed $\bmod p^{k+1}$ for every j, some $k<n$. Then, there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in

Proposition

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that $A_{j \bmod p^{k}}$ is absorbed $\bmod p^{k+1}$ for every j, some $k<n$. Then, there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N}; in addition, every $\bar{A}_{j \bmod p^{k}}$ is equidistributed $\bmod p^{k+1}$,

Proposition

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that $A_{j \bmod p^{k}}$ is absorbed $\bmod p^{k+1}$ for every j, some $k<n$. Then, there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N}; in addition, every $\bar{A}_{j \bmod p^{k}}$ is equidistributed $\bmod p^{k+1}$, or equivalently,

$$
\bar{A}\left(\zeta_{p^{k+1}}\right)=0 .
$$

Proposition

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that $A_{j \bmod p^{k}}$ is absorbed $\bmod p^{k+1}$ for every j, some $k<n$. Then, there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N}; in addition, every $\bar{A}_{j \bmod p^{k}}$ is equidistributed $\bmod p^{k+1}$, or equivalently,

$$
\bar{A}\left(\zeta_{p^{k+1}}\right)=0 .
$$

Corollary
Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$. Then there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N},

Proposition

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that $A_{j \bmod p^{k}}$ is absorbed $\bmod p^{k+1}$ for every j, some $k<n$. Then, there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N}; in addition, every $\bar{A}_{j \bmod p^{k}}$ is equidistributed $\bmod p^{k+1}$, or equivalently,

$$
\bar{A}\left(\zeta_{p^{k+1}}\right)=0 .
$$

Corollary

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$. Then there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N}, such that for every $k<n$ (resp. $\ell<m$), there is j such that $\bar{A}_{j \bmod p^{k}}\left(\right.$ resp. $\left.\bar{A}_{j \bmod q^{\ell}}\right)$ is not absorbed $\bmod p^{k+1}($ resp. $\left.\bmod q^{\ell+1}\right)$.

Proposition

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that $A_{j \bmod p^{k}}$ is absorbed $\bmod p^{k+1}$ for every j, some $k<n$. Then, there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N}; in addition, every $\bar{A}_{j \bmod p^{k}}$ is equidistributed $\bmod p^{k+1}$, or equivalently,

$$
\bar{A}\left(\zeta_{p^{k+1}}\right)=0 .
$$

Corollary

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$. Then there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N}, such that for every $k<n$ (resp. $\ell<m$), there is j such that $\bar{A}_{j \bmod p^{k}}\left(\right.$ resp. $\left.\bar{A}_{j \bmod q^{\ell}}\right)$ is not absorbed $\bmod p^{k+1}($ resp. $\bmod q^{\ell+1}$). Such subsets will be called absorption-free.

Proposition

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$, such that $A_{j \bmod p^{k}}$ is absorbed $\bmod p^{k+1}$ for every j, some $k<n$. Then, there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N}; in addition, every $\bar{A}_{j \bmod p^{k}}$ is equidistributed $\bmod p^{k+1}$, or equivalently,

$$
\bar{A}\left(\zeta_{p^{k+1}}\right)=0 .
$$

Corollary

Let (A, B) be a spectral pair in $\mathbb{Z}_{N}, N=p^{n} q^{m}$. Then there are $S, T \subseteq \mathbb{Z}_{N}$ such that $(\bar{A}, \bar{B})=(A \oplus S, B \oplus T)$ is a spectral pair in \mathbb{Z}_{N}, such that for every $k<n$ (resp. $\ell<m$), there is j such that $\bar{A}_{j \bmod p^{k}}\left(\right.$ resp. $\left.\bar{A}_{j \bmod q^{\ell}}\right)$ is not absorbed $\bmod p^{k+1}($ resp. $\bmod q^{\ell+1}$). Such subsets will be called absorption-free.

Remark

With the above Corollary, we may further reduce to spectral (A, B), where both A, B are absorption-free.

This is used to prove:
Theorem (M)
Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{m}$, satisfying (T1). Then, it also satisfies (T2), hence A tiles \mathbb{Z}_{N}.

Remark

With the above Corollary, we may further reduce to spectral (A, B), where both A, B are absorption-free.

This is used to prove:

Theorem (M)

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{m}$, satisfying (T1). Then, it also satisfies (T2), hence A tiles \mathbb{Z}_{N}.

> Therefore it suffices to confirm (T1) for a spectral $A \subseteq \mathbb{Z}_{N}$ Actually, (T1) can be replaced by a weaker condition:

Definition

Let $A \subseteq \mathbb{Z}_{N}$. We say that A satisfies ($w T 1$) if there is a prime $p \mid N$, such that $p^{k} \||A|$, where $A(X)$ has exactly k roots of the form $\zeta_{p^{\nu}}$.

Remark

With the above Corollary, we may further reduce to spectral (A, B), where both A, B are absorption-free.

This is used to prove:

Theorem (M)

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{m}$, satisfying (T1). Then, it also satisfies (T2), hence A tiles \mathbb{Z}_{N}.

Therefore it suffices to confirm (T1) for a spectral $A \subseteq \mathbb{Z}_{N}$. Actually, (T1) can be replaced by a weaker condition:

Definition

Let $A \subseteq \mathbb{Z}_{N}$. We say that A satisfies (wT 1) if there is a prime $p \mid N$, such that $p^{k} \||A|$, where $A(X)$ has exactly k roots of the form $\zeta_{p^{\nu}}$.

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{m}$. If $p^{n}| | A \mid$, then A satisfies (wT1).

Theorem
Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{3}$. Then A tiles \mathbb{Z}_{N}.

Proposition
Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{m}$. If $p^{n}| | A \mid$, then A satisfies (wT1).

Theorem

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{3}$. Then A tiles \mathbb{Z}_{N}.

Sketch of proof.

Wlog, A is primitive, nontrivial union of p - and q-cycles, absorption-free set. We know

$$
A\left(\zeta_{q}\right)=A\left(\zeta_{q^{3}}\right)=A\left(\zeta_{p}\right)=A\left(\zeta_{p q}\right)=A\left(\zeta_{p q^{3}}\right)=0
$$

Proposition

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{m}$. If $p^{n}| | A \mid$, then A satisfies (wT1).

Theorem

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{3}$. Then A tiles \mathbb{Z}_{N}.

Sketch of proof.

Wlog, A is primitive, nontrivial union of p - and q-cycles, absorption-free set. We know

$$
A\left(\zeta_{q}\right)=A\left(\zeta_{q^{3}}\right)=A\left(\zeta_{p}\right)=A\left(\zeta_{p q}\right)=A\left(\zeta_{p q^{3}}\right)=0
$$

If $A\left(\zeta_{q^{2}}\right)=0$ then A tiles \mathbb{Z}_{N}, so we assume $A\left(\zeta_{q^{2}}\right) \neq 0$. The fact that A is absorption-free forces $A\left(\zeta_{p q^{2}}\right)=0$, which implies that each $A_{j \bmod q}$ is either absorbed or equidistributed $\bmod q^{2}$, both phenomena appearing.

Proposition

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{m}$. If $p^{n}| | A \mid$, then A satisfies (wT1).

Theorem

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{3}$. Then A tiles \mathbb{Z}_{N}.

Sketch of proof.

Wlog, A is primitive, nontrivial union of p - and q-cycles, absorption-free set. We know

$$
A\left(\zeta_{q}\right)=A\left(\zeta_{q^{3}}\right)=A\left(\zeta_{p}\right)=A\left(\zeta_{p q}\right)=A\left(\zeta_{p q^{3}}\right)=0
$$

If $A\left(\zeta_{q^{2}}\right)=0$ then A tiles \mathbb{Z}_{N}, so we assume $A\left(\zeta_{q^{2}}\right) \neq 0$. The fact that A is absorption-free forces $A\left(\zeta_{p q^{2}}\right)=0$, which implies that each $A_{j \bmod q}$ is either absorbed or equidistributed $\bmod q^{2}$, both phenomena appearing. So, there is j such that $A_{j \bmod } q^{3}=\frac{1}{q^{3}}|A|$, so A satisfies ($w T 1$), and it tiles \mathbb{Z}_{N}.

Proposition

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{m}$. If $p^{n}| | A \mid$, then A satisfies (wT1).

Theorem

Let $A \subseteq \mathbb{Z}_{N}$ be spectral, $N=p^{n} q^{3}$. Then A tiles \mathbb{Z}_{N}.

Sketch of proof.

Wlog, A is primitive, nontrivial union of p - and q-cycles, absorption-free set. We know

$$
A\left(\zeta_{q}\right)=A\left(\zeta_{q^{3}}\right)=A\left(\zeta_{p}\right)=A\left(\zeta_{p q}\right)=A\left(\zeta_{p q^{3}}\right)=0
$$

If $A\left(\zeta_{q^{2}}\right)=0$ then A tiles \mathbb{Z}_{N}, so we assume $A\left(\zeta_{q^{2}}\right) \neq 0$. The fact that A is absorption-free forces $A\left(\zeta_{p q^{2}}\right)=0$, which implies that each $A_{j \bmod q}$ is either absorbed or equidistributed $\bmod q^{2}$, both phenomena appearing. So, there is j such that $A_{j \bmod q^{3}}=\frac{1}{q^{3}}|A|$, so A satisfies ($\mathrm{w} T 1$), and it tiles \mathbb{Z}_{N}.

Thank you

