
Fuglede’s spectral set conjecture on cyclic groups

Romanos Diogenes Malikiosis

TU Berlin

Frame Theory and Exponential Bases
4-8 June 2018

ICERM, Providence

Joint work with M. Kolountzakis (U. of Crete)
& work in progress

R. D. Malikiosis Fuglede’s spectral set conjecture on cyclic groups



Fourier Analysis on domains Ω ⊆ Rn

Question

On which measurable domains Ω ⊆ Rn with µ(Ω) > 0 can we do
Fourier analysis, that is, there is an orthonormal basis of

exponential functions
{

1
µ(Ω)e

2πiλ·x : λ ∈ Λ
}

in L2(Ω), where

Λ ⊆ Rn discrete?

Definition

If Ω satisfies the above condition it is called spectral, and Λ is the
spectrum of Ω.

� The n-dimensional cube C = [0, 1]n.

� Parallelepipeds AC , where A ∈ GL(n,R).

� Hexagons on R2.

� Not n-dimensional balls! (n ≥ 2) (Iosevich, Katz, Pedersen,
’99)
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Fuglede’s conjecture

Definition

A set Ω ⊆ Rn of positive measure is called tile of Rn if there is
T ⊆ Rn such that Ω⊕ T = Rn.

Conjecture (Fuglede, 1974)

A set Ω ⊆ Rn of positive measure is spectral if and only if it tiles
Rn.
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Basic properties

Let eλ(x) = e2πiλ·x . Wlog, µ(Ω) = 1. Inner product and norm on
L2(Ω):

〈f , g〉Ω =

∫
Ω
f ḡ , ‖f ‖2

Ω =

∫
Ω
|f |2.

It holds 〈eλ, eµ〉Ω = 1̂Ω(µ− λ).

Lemma

Λ is a spectrum of Ω if and only if

1̂Ω(λ− µ) = 0, ∀λ 6= µ, λ, µ ∈ Λ

and
∀f ∈ L2(Ω) : ‖f ‖2

Ω =
∑
λ∈Λ

|〈f , eλ〉|2.
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Special cases

Theorem (Fuglede, ’74)

Let Ω ⊆ Rn be an open bounded set of measure 1 and Λ ⊆ Rn be
a lattice with density 1. Then Ω⊕ Λ = Rn if and only if Λ? is a
spectrum of Ω.

Theorem (Kolountzakis, ’00)

Let Ω ⊆ Rn, n ≥ 2, be a convex asymmetric body. Then Ω is not
spectral.

Theorem (Iosevich, Katz, Tao, ’01)

Let Ω ⊆ Rn, n ≥ 2, be a convex symmetric body. If ∂Ω is smooth,
then Ω is not spectral. The same holds for n = 2 when ∂Ω is
piecewise smooth possessing at least one point of nonzero
curvature.
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Convex polytopes

According to the theorems of Venkov (’54) and McMullen (’80),
the above do not tile Rn.

Theorem (Greenfeld, Lev, ’17)

Let K ⊆ Rn be a convex symmetric polytope, which is spectral.
Then its facets are also symmetric. Also, if n = 3, any spectral
convex polytope tiles the space.
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Tao’s counterexample

“A cataclysmic event in the history of this problem took place in
2004 when Terry Tao disproved the Fuglede Conjecture by
exhibiting a spectral set in R12 which does not tile.”
The Fuglede Conjecture holds in Zp × Zp, Iosevich, Mayeli,
Pakianathan, 2017.

Theorem (Tao, ’04)

There are spectral subsets of R5 of positive measure that do not
tile R5.

Theorem (Farkas-Kolountzakis-Matolcsi-Mora-Revesz-Tao, ’04-’06)

Fuglede’s conjecture fails for n ≥ 3 (both directions).

The conjecture is still open for n ≤ 2. Tao’s counterexample is a
union of unit cubes. It comes from a spectral subset of Z5

3 of size 6.
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Passage to finite groups

Definition

Let G be an Abelian group. We write (S-T(G )) if every bounded
spectral subset of G is also a tile, and (T-S(G )) if every bounded
tile of G is spectral.

Theorem (Dutkay, Lai, ’14)

The following hold:

(T-S(Zn))∀n ∈ N⇔ (T-S(Z))⇔ (T-S(R))

and
(S-T(R))⇒ (S-T(Z))⇒ (S-T(Zn))∀n ∈ N.
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Passage to finite groups

The last hold in both directions if every bounded spectral subset of
R has a rational spectrum. Some results in the positive direction:

� If Ω = A + [0, 1] ⊆ R is spectral, with |A| = N and
A ⊆ [0,M − 1] with M < 5N/2, then Ω has a rational
spectrum ( Laba, ’02).

� If Fuglede’s conjecture holds in R, then every bounded
spectral set has a rational spectrum (Dutkay, Lai, ’14).

� If Ω = A + [0, 1] ⊆ R is spectral, and A− A contains certain
patterns (flags), then Ω has rational spectrum (Bose, Madan,
’17).
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Non-cyclic groups

The properties (S-T(G )) and (T-S(G )) are hereditary, that is,
they hold for every subgroup of G .
It suffices then to examine groups of the form Zd

N . For d ≥ 2 we
get the following results:

� There is a spectral subset of Z3
8 that does not tile

(Kolountzakis, Matolcsi, ’06).

� There is a tile of Z3
24 that is not spectral (Farkas, Matolcsi,

Mora, ’06).

� Fuglede’s conjecture holds in Z2
p, p prime (Iosevich, Mayeli,

Pakianathan, ’17).
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Cyclic groups

 Laba’s work on tiles and spectral subsets A ⊆ Z with |A| = pn or
pnqm, along with the results of Coven-Meyerowitz on tiling subsets
of Z, has the following consequences for for cyclic groups G = ZN :

� If N is a prime power, then both (S-T(ZN)) and (T-S(ZN))
hold (also by Fan, Fan, Shi, ’16, and Kolountzakis, M, ’17).

� If N = pnqm, then (T-S(ZN)) (also Kolountzakis, M, ’17).
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Cyclic groups

Moreover,

� If N = pnq, then (S-T(ZN)) (Kolountzakis, M, ’17).

� If N is square-free, then (T-S(ZN)) ( Laba and Meyerowitz,
answering a question in Tao’s blog, also, Shi ’18).

� If N = pnqm, with m or n ≤ 6, then (S-T(ZN)) (M, work in
progress).

� If N = pnqm, with m, n ≥ 7 and pn−6 < q3 with p < q, then
(S-T(ZN)) (M, work in progress).
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� If N = pnqm, with m, n ≥ 7 and pn−6 < q3 with p < q, then
(S-T(ZN)) (M, work in progress).
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The mask polynomial

Definition (Coven-Meyerowitz, ’98)

Let A ⊆ ZN . The mask polynomial A is given by∑
a∈A

X a ∈ Z[X ]/(XN − 1).

It holds
1̂A(d) = A(ζdN),∀d ∈ ZN .

Λ is a spectrum of A if and only if |A| = |Λ| and

A(ζord(`−`′)) = 0, ∀`, `′ ∈ Λ, ` 6= `′.

Moreover, A⊕ T = ZN if and only if

A(X )T (X ) ≡ 1 + X + X 2 + · · ·+ XN−1 mod (XN − 1).
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The properties (T1) and (T2)

Definition

Let A(X ) ∈ Z[X ]/(XN − 1), and let

SA = {d | N : d prime power,A(ζd) = 0}.

We define the following properties:

(T1) A(1) =
∏

s∈SA Φs(1)

(T2) Let s1, s2, . . . , sk ∈ SA be powers of different primes. Then
Φs(X ) | A(X ), where s = s1 · · · sk .

Remark

When N is a prime power, (T2) holds vacuously. If N = pnqm,
then (T2) is simply

A(ζpk ) = A(ζq`) = 0⇒ A(ζpkq`) = 0
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Example

Let A ⊆ ZN , N = p4q4r3, such that

A(ζp) = A(ζp3) = A(ζq2) = A(ζr3) = 0,

and A(X ) has no other root of order a power of p, q, or r . Then,
(T1) is equivalent to |A| = p2qr , and (T2) is equivalent to

A(ζpq2) = A(ζp3q2) = A(ζpr3) = A(ζp3r3) = A(ζq2r3) =

= A(ζpq2r3) = A(ζp3q2r3) = 0.
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Tiling, spectrality, and (T1), (T2)

The following are consequences of the works of Coven-Meyerowitz
(’98) and  Laba (’02); also Kolountzakis-Matolcsi (’07).

Theorem

If A ⊆ ZN satisfies (T1) and (T2), then it tiles ZN . If A tiles ZN ,
then it satisfies (T1); if in addition N = pnqm, then A satisfies
(T2) as well.

Theorem

If A ⊆ ZN satisfies (T1) and (T2), then it is spectral. If N = pn

and A is spectral, then it satisfies (T1).
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(T-S(ZN)), N square-free

Let A⊕ T = ZN , with |A| = m. Then, also A⊕mT = ZN , due to

(A− A) ∩ (T − T ) = {0}.

The mask polynomial of mT is T (Xm) mod (XN − 1), so if
p1, . . . , pk | m, we have

A(ζpj ) = 0, 1 ≤ j ≤ k ,

since pj - |T |,

and

T (ζmp1···pk ) = T (1) 6= 0,

thus
A(ζp1···pk ) = 0,

and A satisfies (T2).
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Primitive subsets of ZN

Definition

A subset A ⊆ G is called primitive if it is not contained in a proper
coset of G .

Lemma

Let G = ZN with N = pnqm, and A ⊆ ZN primitive. Then
(A− A) ∩ Z?N 6= ∅.

Proof.

Let a ∈ A. Since a− A * pZN or qZN , there are a′, a′′ ∈ A such
that a− a′ /∈ pZN , a− a′′ /∈ qZN . If either a− a′ /∈ qZN or
a− a′′ /∈ pZN , then we’re done, so wlog q | a− a′ and p | a− a′′,
which yields a′′ − a′ ∈ Z?N .
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Primitive spectral pairs, N = pnqm

Corollary

Let (A,B) be a spectral pair in ZN , such that both A and B are
primitive. Then,

A(ζN) = B(ζN) = 0.

Remark

If A is not primitive, then A ⊆ pZN (say), which implies
(B − B) ∩ N

p ZN = {0}. Then, (A,B) is a spectral pair in ZN/p,

where p · A = A. Moreover, if A satisfies (T1) and (T2) in ZN/p,
then A satisfies the same properties in ZN .
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Vanishing sums of roots of unity

Lemma

Let rad(N) = pq and A(X ) ∈ Z[X ] with nonnegative coefficients,
such that A(ζdN) = 0, for some d | N. Then,

A(X d) ≡ P(X d)Φp(XN/p) + Q(X d)Φq(XN/q) mod (XN − 1),

where P(X ),Q(X ) ∈ Z[X ] can be taken with nonnegative
coefficients.

� The polynomial A(X d) is the mask polynomial of the multiset
d · A.

� Φp(XN/p) is the mask polynomial of the subgroup N
p ZN . Its

cosets are called p-cycles.

� The above Lemma shows that if A(ζN) = 0, then A is the
disjoint union of p- and q-cycles.
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Remark

If A is the disjoint union of p-cycles only, then

A ∩
{

0, 1, . . . ,
N

p
− 1

}
and

1

p
B0 mod p

is a spectral pair in ZN/p.

We reduce to the case where both A and B are nontrivial unions of
p- and q-cycles. This implies

A(ζp) = A(ζq) = B(ζp) = B(ζq) = 0.

As a consequence,

|Aj mod p| = |Bj mod p| =
1

p
|A|, |Ai mod q| = |Bi mod q| =

1

q
|A|,

for all i , j .
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Proposition

Let (A,B) be a primitive spectral pair in ZN , N = pnqm, such that
neither A nor B is a union of p-(or q-)cycles exclusively. Then,
both A(X ) and B(X ) vanish at

ζN , ζpn , ζqm ,

ζp, ζq, ζpq,

ζpnq, ζpqm .
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A special case

Proposition

If N = pmqn and A ⊆ ZN is spectral satisfying

A(ζp) = A(ζp2) = · · · = A(ζpm) = 0

then A tiles ZN .

Sketch of proof.

By hypothesis, |Aj mod pm | = 1
pm |A|.

Each Aj mod pm(X ) has
precisely the same roots of the form ζqk with A(X ). So, A satisfies
(T1). Next, if A(ζqk ) = 0, then for each 1 ≤ i ≤ m we have

A(ζpiqk ) =

pm−1∑
j=0

Aj mod pm(ζpiqk ) =

pm−1∑
j=0

ζ j
piqk

σ(ζ−j
qk
Aj mod pm(ζqk )) = 0

for some σ ∈ Gal(Q(ζN)/Q), so it A satisfies (T2) as well.
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Theorem

Let A ⊆ ZN be spectral, with N = pnqm, m ≤ 2. Then A tiles ZN .

Proof.

Wlog, A and a spectrum B are both primitive and nontrivial unions
of p- and q-cycles, so using the above reductions we may assume
A(ζq) = A(ζq2) = 0, which by the previous Proposition yields that
A tiles ZN .

R. D. Malikiosis Fuglede’s spectral set conjecture on cyclic groups



Theorem

Let A ⊆ ZN be spectral, with N = pnqm, m ≤ 2. Then A tiles ZN .

Proof.

Wlog, A and a spectrum B are both primitive and nontrivial unions
of p- and q-cycles, so using the above reductions we may assume
A(ζq) = A(ζq2) = 0, which by the previous Proposition yields that
A tiles ZN .

R. D. Malikiosis Fuglede’s spectral set conjecture on cyclic groups



The absorption-equidistribution property

Definition

We say that a subset A ⊆ ZN satisfies the
absorption-equidistribution property, if for every d | N and p prime
such that pd | N, either every subset Aj mod d is equidistributed
modpd , that is

|Aj+kd mod pd | =
1

p
|Aj mod d |,∀k ∈ {0, 1, . . . , p − 1},

or every Aj mod d is absorbed modpd , i. e. there is
k ∈ {0, 1, . . . , p − 1} such that

Aj mod d = Aj+kd mod pd .

Question

Is the absorption-equidistribution property equivalent to (T1) &
(T2)?
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Proposition

Let (A,B) be a spectral pair in ZN , N = pnqm, such that Aj mod pk

is absorbed modpk+1 for every j, some k < n. Then, there are
S ,T ⊆ ZN such that (A,B) = (A⊕ S ,B ⊕ T ) is a spectral pair in
ZN ;

in addition, every Aj mod pk is equidistributed modpk+1, or
equivalently,

A(ζpk+1) = 0.

Corollary

Let (A,B) be a spectral pair in ZN , N = pnqm. Then there are
S ,T ⊆ ZN such that (A,B) = (A⊕ S ,B ⊕ T ) is a spectral pair in
ZN , such that for every k < n (resp. ` < m), there is j such that
Aj mod pk (resp. Aj mod q`) is not absorbed modpk+1 (resp.

modq`+1). Such subsets will be called absorption-free.
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Remark

With the above Corollary, we may further reduce to spectral
(A,B), where both A, B are absorption-free.

This is used to prove:

Theorem (M)

Let A ⊆ ZN be spectral, N = pnqm, satisfying (T1). Then, it also
satisfies (T2), hence A tiles ZN .

Therefore it suffices to confirm (T1) for a spectral A ⊆ ZN .
Actually, (T1) can be replaced by a weaker condition:

Definition

Let A ⊆ ZN . We say that A satisfies (wT1) if there is a prime
p | N, such that pk || |A|, where A(X ) has exactly k roots of the
form ζpν .
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Proposition

Let A ⊆ ZN be spectral, N = pnqm. If pn | |A|, then A satisfies
(wT1).

Theorem

Let A ⊆ ZN be spectral, N = pnq3. Then A tiles ZN .

Sketch of proof.

Wlog, A is primitive, nontrivial union of p- and q-cycles,
absorption-free set. We know

A(ζq) = A(ζq3) = A(ζp) = A(ζpq) = A(ζpq3) = 0.

If A(ζq2) = 0 then A tiles ZN , so we assume A(ζq2) 6= 0. The fact
that A is absorption-free forces A(ζpq2) = 0, which implies that
each Aj mod q is either absorbed or equidistributed modq2, both
phenomena appearing. So, there is j such that Aj mod q3 = 1

q3 |A|,
so A satisfies (wT1), and it tiles ZN .
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Thank you
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